Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 24(3): 3074-3083, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27854062

RESUMO

In this study, the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied for the analysis of the multiclass pesticide residues of 12 organochlorines (OCs), 9 organophosphates (OPs), 11 synthetic pyrethroids (SPs), 4 herbicides, 6 phthalates in raw tea (loose tea, branded tea and herbal tea), and tea infusion in 4 different containers (glass cup, earthen cup, plastic bag and disposal cup). In loose tea and branded tea residues, malathion (0.257 and 0.118 mg kg-1), cypermethrin (0.065 and 0.030 mg kg-1), and fenvalerate (0.032 and 0.030 mg kg-1) were detected, respectively. In herbal tea, residues of only cypermethrin (0.053 mg kg-1) and fenvalerate (0.045 mg kg-1) were detected. Tea infusion samples contained in a plastic bag were found to be contaminated with only dibutyl phthalate (DBP) (0.038 mg kg-1). Disposable cup was found to be contaminated with DBP (0.026 mg kg-1) and diethyl phthalate (DEP) (0.004 mg kg-1). Further, to know the processing behavior of pesticides, the spiked raw tea was subjected to tea infusion at different brewing times (2, 5, 10 min). The analysis demonstrated that dimethoate, dichlorvos, and malathion had shown more than 10 % of translocation at 5 min of brewing time. Further brewing for 10 min revealed the reduction in concentration of pesticides. Leaching of phthalate residues from different plastic containers was also studied at 10, 30, and 60 min. DBP, benzyl butyl phthalate (BzBP), and di-2-(ethylhexyl) phthalate (DEHP) were leached in the tea infusion samples packed in plastic bags. On the other hand, in disposable cups, leaching of DBP, DEP, and dimethyl phthalate were found. The concentration of phthalate residues increased with retention time. Pesticide and phthalate contaminants were recorded at low quantities in few samples only.


Assuntos
Herbicidas/análise , Ácidos Ftálicos/análise , Chá , Dibutilftalato/análise , Dietilexilftalato/análise , Contaminação de Alimentos , Hidrocarbonetos Clorados/análise , Nitrilas , Organofosfatos/análise , Resíduos de Praguicidas/análise , Plásticos/análise , Piretrinas/análise
2.
PLoS One ; 9(5): e96493, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24809911

RESUMO

A total of 162 samples of different varieties of mango: Deshehari, Langra, Safeda in three growing stages (Pre-mature, Unripe and Ripe) were collected from Lucknow, India, and analyzed for the presence of seventeen organophosphate pesticide residues. The QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method of extraction coupled with gas chromatography was validated for pesticides and qualitatively confirmed by gas chromatography-mass spectrometry. The method was validated with different concentrations of mixture of seventeen organophosphate pesticides (0.05, 0.10, 0.50 mg kg(-1)) in mango. The average recovery varied from 70.20% to 95.25% with less than 10% relative standard deviation. The limit of quantification of different pesticides ranged from 0.007 to 0.033 mg kg(-1). Out of seventeen organophosphate pesticides only malathion and chlorpyriphos were detected. Approximately 20% of the mango samples have shown the presence of these two pesticides. The malathion residues ranged from ND-1.407 mg kg(-1) and chlorpyriphos ND-0.313 mg kg(-1) which is well below the maximum residues limit (PFA-1954). In three varieties of mango at different stages from unpeeled to peeled sample reduction of malathion and chlorpyriphos ranged from 35.48%-100% and 46.66%-100% respectively. The estimated daily intake of malathion ranged from 0.032 to 0.121 µg kg(-1) and chlorpyriphos ranged from zero to 0.022 µg kg(-1) body weight from three different stages of mango. The hazard indices ranged from 0.0015 to 0.0060 for malathion and zero to 0.0022 for chlorpyriphos. It is therefore indicated that seasonal consumption of these three varieties of mango may not pose any health hazards for the population of Lucknow, city, India because the hazard indices for malathion and chlorpyriphos residues were below to one.


Assuntos
Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Organofosfatos/análise , Resíduos de Praguicidas/análise , Clorpirifos/análise , Índia , Malation/análise , Mangifera , Medição de Risco
3.
Environ Monit Assess ; 176(1-4): 465-72, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20632088

RESUMO

The study was conducted on 20 vegetables including leafy, root, modified stem, and fruity vegetables like bitter gourd, jack fruit, french-bean, onion, colocassia, pointed gourd, capsicum, spinach, potato, fenugreek seeds, carrot, radish, cucumber, beetroot, brinjal, cauliflower, cabbage, tomato, okra, and bottle gourd. Forty-eight pesticides including 13 organochlorines (OCs), 17 organophosphates (OPs), 10 synthetic pyrethriods (SPs), and eight herbicides (H) pesticides were analyzed. A total number of 60 samples, each in triplicates, were analyzed using Quick, Easy, Cheap, Effective, Rugged, and Safe method. The quantification was done by GC-ECD/NPD. The recovery varies from 70.22% to 96.32% with relative standard deviation (RSD) of 15%. However the limit of detection ranged from 0.001-0.009 mg kg(-1)for OCs, SPs, OPs, and H, respectively. Twenty-three pesticides were detected from total 48 analyzed pesticides in the samples with the range of 0.005-12.35 mg kg(-1). The detected pesticides were: Σ-HCH, Dicofol, Σ-Endosulfan, Fenpropathrin, Permethrin-II, ß-cyfluthrin-II, Fenvalerate-I, Dichlorvos, Dimethoate, Diazinon, Malathion, Chlorofenvinfos, Anilophos, and Dimethachlor. In some vegetables like radish, cucumber, cauliflower, cabbage, and okra, the detected pesticides (Σ-HCH, Permethrin-II, Dichlorvos, and Chlorofenvinfos) were above maximum residues limit (MRL) (PFA 1954). However, in other vegetables the level of pesticide residues was either below detection limit or MRL.


Assuntos
Resíduos de Praguicidas/análise , Verduras/química , Cromatografia Gasosa , Monitoramento Ambiental , Herbicidas/análise , Hidrocarbonetos Clorados/análise , Índia , Nitrilas/análise , Organofosfatos/análise , Piretrinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...