Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(25): 5274-5280, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37309755

RESUMO

An efficient anti-Markovnikov selective transition metal- and solvent-free Lewis base-mediated protoboration of aromatic and aliphatic alkenes with bis(pinacolato)diboron (B2pin2) as the boron reagent is reported. This protocol is practical and demonstrates broad substrate scope and good functional-group tolerance on alkenes to give synthetically useful alkyl boronate esters in excellent yields under mild reaction conditions. The gram-scale reaction further highlighted the usefulness of this method.

2.
Org Biomol Chem ; 18(25): 4872, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32555903

RESUMO

Correction for 'Half-sandwich (η5-Cp*)Rh(iii) complexes of pyrazolated organo-sulfur/selenium/tellurium ligands: efficient catalysts for base/solvent free C-N coupling of chloroarenes under aerobic conditions' by Charu Sharma et al., Org. Biomol. Chem., 2020, 18, 3599-3606, DOI: 10.1039/D0OB00538J.

3.
Org Biomol Chem ; 18(18): 3599-3606, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32347877

RESUMO

Three new pyrazolated chalcogenoether ligated Rh(iii) half-sandwich complexes (1-3) were synthesised by the thermal reaction of chalcogenoether (S, Se and Te) substituted 1H-pyrazole ligands (L1-L3) and [(η5-C5Me5)RhCl]2 in methanol. The complexes were fully characterised by various spectroscopic techniques, and the molecular structures of complexes 1 and2 were also established through single crystal X-ray crystallographic analysis, which indicates a pseudo-octahedral half-sandwich piano-stool geometry around the rhodium metal. All three complexes were found to be thermally stable and insensitive towards air and moisture. One mol% of Rh(iii) complexes (1-3) along with 10 mol% of Cu(OAc)2 were explored for the Buchwald-Hartwig type C-N coupling reactions of amine and aryl chloride. Good to excellent yields (89-92%) of the coupling products were obtained with seleno- and thio-ether functionalised pyrazolated Rh(iii) complexes (1 and 2), while an average yield (39%) was obtained with the telluro-ether functionalised complex (3). In contrast to the previously reported C-N coupling reactions the present reaction works under solvent- and base-free conditions, and the coupling reaction is accomplished in just 6 h with a high yield of the coupling product. The present methodology was also found to be efficient for a wide variety of functionalised aryl halides, and aliphatic or aromatic amines (1° and 2°). Moreover, the reaction also enables the C-N coupling of electron-withdrawing substrates and base-sensitive functionalities.

4.
RSC Adv ; 10(54): 32516-32521, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35516488

RESUMO

Highly stable and thermally robust iron chalcogenide carbonyl clusters Fe3E2(CO)9 (E = S, Se or Te) have been explored for the reduction of nitrobenzene. A 15 min thermal heating of an aqueous solution of nitrobenzene and hydrazine hydrate in the catalytic presence of Fe3E2(CO)9 (E = S, Se or Te) clusters yield average to excellent aniline transformations. Among the S, Se and Te based iron chalcogenised carbonyl clusters, the diselenide cluster was found to be most efficient and produce almost 90% yield of the desired amino product, the disulfide cluster was also found to be significantly active, produce the 85% yield of amino product, while the ditelluride cluster was not found to be active and produced only 49% yield of the desired product. The catalyst can be reused up to three catalytic cycles and it needs to be dried in an oven for one hour prior to reuse for the best results. The developed method is inexpensive, environmentally benign, does not require any precious metal or a high pressure of toxic CO gas and exclusively brings the selective reduction of the nitro group under feasible and inert free conditions.

5.
Org Biomol Chem ; 17(40): 8969-8976, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31576395

RESUMO

A new 1-[N-benzylacetamido]-3-[1-(2-phenylselenylethyl)]benzimidazolium chloride (L), the precursor of a novel (Se, CNHC, N-)-type pincer ligand (L) was synthesised in high yield through a sequence of consecutive reactions of 1H-benzimidazole with ethylene dichloride, sodium selenophenolate, and N-benzyl-2-chloroacetamide. The palladium-promoted reaction of L with PdCl2 resulted in a moisture- and air-insensitive complex [Pd(L-H2Cl)Cl] (1), which demonstrated outstanding catalytic potential for Mizoroki-Heck coupling of aromatic bromides and chlorides (with yields up to 94% and 70%, respectively) at very low catalyst loading (0.2 mol%) and under mild reaction conditions in water. The complex (1) was also investigated for Suzuki-Miyaura coupling and found to be selectively efficient (yields up to 94%) for Suzuki-Miyaura coupling of aromatic bromides at 0.01 mol% of 1 in water. All coupling reactions were carried out in the green and economical solvent, water, which is highly desirable for bulk synthesis of complex molecules in industry. During the catalytic process, complex 1 converted into PdSe nanoparticles (NPs, size range 5-6 nm) in situ. The morphology and composition of these NPs were analysed through high-resolution transmission electron microscopy and transmission electron microscopy-energy dispersive X-ray spectroscopy, respectively. The core-level, X-ray photoelectron spectroscopy analysis confirmed the presence of stable Pd0 and Pd2+ oxidation states in these PdSe NPs. Based on further experimental investigations, these nanoparticles were found to work as a stock of true catalytic species. The hot filtration test, as well as the two-phase test, confirmed the largely homogeneous nature of the catalytic process, which probably proceeds by leaching of solution-phase Pd species from these NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...