Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 223: 89-97, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692038

RESUMO

The present study investigates the distribution and dynamics of gonadotropin-releasing hormone I (GnRH I) and bradykinin in the air-breathing catfish, Heteropneustes fossilis, in relation to the reproductive cycle. Changes in bradykinin, bradykinin B2-receptor, and ovarian GnRH I regulation were demonstrated during the reproductive cycle. The localization of GnRH I, bradykinin, and their respective receptors in the ovaries was investigated by immunohistochemistry, while their levels were quantified by slot/western blot followed by densitometry. GnRH I and its receptor were mainly localized in the cytoplasm of oocytes during the early previtellogenic phase. However, as the follicles grew larger, immunoreactivity was observed in the granulosa and theca cells of the late previtellogenic follicles. The ovaries showed significantly higher expression of GnRH I protein and its receptor during the early to mid-previtellogenic phase, suggesting their involvement in follicular development. Bradykinin and bradykinin B2-receptor showed a distribution pattern similar to that of GnRH I and its receptor. This study further suggested the possibility that bradykinin regulates GnRH I synthesis in the ovary. Thus, we show that the catfish ovary has a GnRH-bradykinin system and plays a role in follicular development and oocyte maturation in H. fossilis.


Assuntos
Bradicinina , Peixes-Gato , Hormônio Liberador de Gonadotropina , Ovário , Estações do Ano , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Peixes-Gato/metabolismo , Ovário/metabolismo , Bradicinina/metabolismo , Reprodução/fisiologia , Receptores LHRH/metabolismo , Regulação da Expressão Gênica
2.
J Biol Chem ; 299(1): 102716, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403856

RESUMO

Adipocyte hyperplasia and hypertrophy are the two main processes contributing to adipose tissue expansion, yet the mechanisms that regulate and balance their involvement in obesity are incompletely understood. Activin B/GDF-3 receptor ALK7 is expressed in mature adipocytes and promotes adipocyte hypertrophy upon nutrient overload by suppressing adrenergic signaling and lipolysis. In contrast, the role of ALK4, the canonical pan-activin receptor, in adipose tissue is unknown. Here, we report that, unlike ALK7, ALK4 is preferentially expressed in adipocyte precursors, where it suppresses differentiation, allowing proliferation and adipose tissue expansion. ALK4 expression in adipose tissue increases upon nutrient overload and positively correlates with fat depot mass and body weight, suggesting a role in adipose tissue hyperplasia during obesity. Mechanistically, ALK4 signaling suppresses expression of CEBPα and PPARγ, two master regulators of adipocyte differentiation. Conversely, ALK4 deletion enhances CEBPα/PPARγ expression and induces premature adipocyte differentiation, which can be rescued by CEBPα knockdown. These results clarify the function of ALK4 in adipose tissue and highlight the contrasting roles of the two activin receptors in the regulation of adipocyte hyperplasia and hypertrophy during obesity.


Assuntos
Receptores de Ativinas Tipo I , Adipócitos , Tecido Adiposo , Humanos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Hiperplasia/metabolismo , Hipertrofia/metabolismo , Obesidade/metabolismo , PPAR gama/metabolismo , Diferenciação Celular , Receptores de Ativinas Tipo I/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293486

RESUMO

High-calorie diets and chronic stress are major contributors to the development of obesity and metabolic disorders. These two risk factors regulate the activity of the sympathetic nervous system (SNS). The present study showed a key role of the cannabinoid type 1 receptor (CB1) in dopamine ß-hydroxylase (dbh)-expressing cells in the regulation of SNS activity. In a diet-induced obesity model, CB1 deletion from these cells protected mice from diet-induced weight gain by increasing sympathetic drive, resulting in reduced adipogenesis in white adipose tissue and enhanced thermogenesis in brown adipose tissue. The deletion of CB1 from catecholaminergic neurons increased the plasma norepinephrine levels, norepinephrine turnover, and sympathetic activity in the visceral fat, which coincided with lowered neuropeptide Y (NPY) levels in the visceral fat of the mutant mice compared with the controls. Furthermore, the mutant mice showed decreased plasma corticosterone levels. Our study provided new insight into the mechanisms underlying the roles of the endocannabinoid system in regulating energy balance, where the CB1 deletion in dbh-positive cells protected from diet-induced weight gain via multiple mechanisms, such as increased SNS activity, reduced NPY activity, and decreased basal hypothalamic-pituitary-adrenal (HPA) axis activity.


Assuntos
Canabinoides , Neuropeptídeo Y , Camundongos , Animais , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Endocanabinoides/metabolismo , Dopamina beta-Hidroxilase/genética , Dopamina beta-Hidroxilase/metabolismo , Canabinoides/metabolismo , Corticosterona/metabolismo , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Neurônios/metabolismo , Norepinefrina/metabolismo , Aumento de Peso
4.
Artigo em Inglês | MEDLINE | ID: mdl-35705113

RESUMO

Seasonally polyphenic types have been documented in many Drosophilids, which differ significantly during thermal stress. Although Drosophila simulans is a sibling species to Drosophila melanogaster, both thrive in the temperate and tropical climates, but various climatic factors are expected to impact their distribution and abundance. As a result, D. simulans may use phenotypic plasticity to adapt to colder and drier circumstances in temperate zones, although such studies are less known. In the present study, our main aim was to find a link between adaptive plasticity and thermal tolerance in D. simulans. We characterized two morphs in D. simulans flies based on the abdominal melanization collected from the same locality and season, as this trait is highly associated with the larval developmental conditions. Our results suggested that flies reared from dark and light morph showed significant differences in the basal level of proline, carbohydrates (trehalose, glycogen), and lipids (cuticular lipids and total body lipids) within simulated seasons and morph lineages in D. simulans flies. We further showed that D. simulans reared from dark morph are better adapted to cold conditions, whereas light flies are more adapted to warm conditions. The flies, both from light and dark morph lineages, when reared at 15 °C, showed an increase in the level of total body lipids after acclimation at 0 °C but a decrease in the level of proline and carbohydrates (trehalose, glycogen). Heat acclimation increases glycogen levels in the flies from light morph lineage while decreases trehalose and proline.


Assuntos
Drosophila melanogaster , Drosophila simulans , Aclimatação/fisiologia , Animais , Drosophila/fisiologia , Glicogênio , Lipídeos , Prolina , Trealose
5.
Front Cell Neurosci ; 16: 867267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634468

RESUMO

The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain's mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.

6.
J Med Chem ; 65(7): 5449-5461, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35349261

RESUMO

Peptidic agonists of the glucagon-like peptide-1 receptor (GLP-1R) have gained a prominent role in the therapy of type-2 diabetes and are being considered for reducing food intake in obesity. Potential advantages of small molecules acting as positive allosteric modulators (PAMs) of GLP-1R, including oral administration and reduced unwanted effects, could improve the utility of this class of drugs. Here, we describe the discovery of compound 9 (4-{[1-({3-[4-(trifluoromethyl)phenyl]-1,2,4-oxadiazol-5-yl}methyl)piperidin-3-yl]methyl}morpholine, V-0219) that exhibits enhanced efficacy of GLP-1R stimulation, subnanomolar potency in the potentiation of insulin secretion, and no significant off-target activities. The identified GLP-1R PAM shows a remarkable in vivo activity, reducing food intake and improving glucose handling in normal and diabetic rodents. Enantioselective synthesis revealed oral efficacy for (S)-9 in animal models. Compound 9 behavior bolsters the interest of a small-molecule PAM of GLP-1R as a promising therapeutic approach for the increasingly prevalent obesity-associated diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Administração Oral , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Obesidade/tratamento farmacológico , Peptídeos/uso terapêutico
7.
Front Neuroendocrinol ; 65: 100979, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122778

RESUMO

This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.


Assuntos
Neuropeptídeos , Estado Nutricional , Animais , Feminino , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Gravidez , Reprodução/fisiologia , Maturidade Sexual
8.
FASEB J ; 35(8): e21759, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245608

RESUMO

Life-style change and anti-inflammatory interventions have only transient effects in obesity. It is not clear how benefits obtained by these treatments can be maintained longer term, especially during sustained high caloric intake. Constitutive ablation of the activin receptor ALK7 in adipose tissue enhances catecholamine signaling and lipolysis in adipocytes, and protects mice from diet-induced obesity. Here, we investigated the consequences of conditional ALK7 ablation in adipocytes of adult mice with pre-existing obesity. Although ALK7 deletion had little effect on its own, it synergized strongly with a transient switch to low-fat diet (life-style change) or anti-inflammatory treatment (Na-salicylate), resulting in enhanced lipolysis, increased energy expenditure, and reduced adipose tissue mass and body weight gain, even under sustained high caloric intake. By themselves, diet-switch and salicylate had only a temporary effect on weight gain. Mechanistically, combination of ALK7 ablation with either treatment strongly enhanced the levels of ß3-AR, the main adrenergic receptor for catecholamine stimulation of lipolysis, and C/EBPα, an upstream regulator of ß3-AR expression. These results suggest that inhibition of ALK7 can be combined with simple interventions to produce longer-lasting benefits in obesity.


Assuntos
Receptores de Ativinas Tipo I/deficiência , Adipócitos/metabolismo , Ingestão de Alimentos , Lipólise , Obesidade/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Adipócitos/patologia , Animais , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/patologia , Salicilatos/farmacologia
9.
J Biol Chem ; 295(7): 2034-2042, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31919095

RESUMO

Prolonged cold exposure stimulates the formation of brownlike adipocytes expressing UCP1 (uncoupling-protein-1) in subcutaneous white adipose tissue which, together with classical brown adipose tissue, contributes to maintaining body temperature in mammals through nonshivering thermogenesis. The mechanisms that regulate the formation of these cells, alternatively called beige or brite adipocytes, are incompletely understood. Here we report that mice lacking CD137, a cell surface protein used in several studies as a marker for beige adipocytes, showed elevated levels of thermogenic markers, including UCP1, increased numbers of beige adipocyte precursors, and expanded UCP1-expressing cell clusters in inguinal white adipose tissue after chronic cold exposure. CD137 knockout mice also showed enhanced cold resistance. These results indicate that CD137 functions as a negative regulator of "browning" in white adipose tissue and call into question the use of this protein as a functional marker for beige adipocytes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Proteína Desacopladora 1/genética , Adipócitos Bege/metabolismo , Animais , Temperatura Corporal/genética , Temperatura Baixa , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Termogênese/genética
10.
Bone ; 108: 34-42, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29274505

RESUMO

The endocannabinoid (eCB) system, including its receptors, ligands, and their metabolizing enzymes, plays an important role in bone physiology. Skeletal cannabinoid type 1 (CB1) receptor signaling transmits retrograde signals that restrain norepinephrine (NE) release, thus transiently stimulating bone formation following an acute challenge, suggesting a feedback circuit between sympathetic nerve terminals and osteoblasts. To assess the effect of chronic in vivo occurrence of this circuit, we characterized the skeletal phenotype of mice with a conditional deletion of the CB1 receptor in adrenergic/noradrenergic cells, including sympathetic nerves. Whereas the deletion of the CB1 receptor did not affect bone mass accrual in the distal femoral metaphysis and in vertebral bodies of young, 12-week-old mice, it substantially increased bone mass in aged, 35-week-old mutant mice as compared to wild-type controls. Contrary to our expectations, specific deficiency of the CB1 receptor in sympathetic neurons led to a markedly increased bone mass phenotype, associated with an enhanced bone formation rate and reduced osteoclastogenesis. Mechanistically, the reduced skeletal eCB 'tone' in the null mice did not reflect in increased sympathetic tone and reduced bone formation, suggesting that constitutive genetic inactivation of sympathetic CB1 receptor disrupts the negative feedback loop between eCBs and NE signaling in bone.


Assuntos
Envelhecimento/metabolismo , Osteogênese , Receptor CB1 de Canabinoide/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Reabsorção Óssea/patologia , Dopamina beta-Hidroxilase/metabolismo , Endocanabinoides/metabolismo , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeo Y/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
11.
J Clin Invest ; 127(11): 4148-4162, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035280

RESUMO

Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1-KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Macrófagos/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Peso Corporal , Ingestão de Energia , Homeostase , Ativação de Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/imunologia , Obesidade/metabolismo , Especificidade de Órgãos , Transcriptoma
12.
Proc Natl Acad Sci U S A ; 113(35): 9904-9, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528659

RESUMO

Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine ß-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.


Assuntos
Consolidação da Memória/fisiologia , Transtornos da Memória/fisiopatologia , Receptor CB1 de Canabinoide/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Anisomicina/farmacologia , Dopamina beta-Hidroxilase/metabolismo , Eletrochoque/efeitos adversos , Elevação dos Membros Posteriores/efeitos adversos , Indóis/farmacologia , Masculino , Consolidação da Memória/efeitos dos fármacos , Transtornos da Memória/etiologia , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Estresse Psicológico/etiologia
13.
J Steroid Biochem Mol Biol ; 163: 35-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27036999

RESUMO

PCOS is a major cause of anovulatory infertility in women in their reproductive age. However, its etiology and pathophysiology remain uncertain. The immature mice chronically injected with DHEA, termed as PCO-mice, develop numerous large cystic follicles, high circulating androgen and anovulation similar to PCOS in women. Although PCO-mice show decreased ovarian GnRH I-receptor in immunoblot but show increased immunostaining for GnRH I-receptor in oocytes of cystic follicles. PCO-mice show reduced ovarian LH receptor expression, circulating estradiol and progesterone level compared to normal mice injected with vehicle only. The treatment with low dose of GnRH-Agonist in PCO-mice restores ovarian LH receptor expression to the level of normal mice and promote ovulation and formation of functional corpus luteum. GnRH-Antagonist although cause ovulation in PCO-mice but does not restore LH receptor expression to the level of normal mice, and they show low circulating progesterone and hypertrophied vacuolated corpus luteum. Our study suggests that GnRH-agonist restores ovulation in PCO-mice and produces biphasic and beneficial effect over the use of GnRH-Antagonist.


Assuntos
Corpo Lúteo/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Síndrome do Ovário Policístico/tratamento farmacológico , Receptores LHRH/genética , Animais , Corpo Lúteo/metabolismo , Corpo Lúteo/patologia , Desidroepiandrosterona/administração & dosagem , Modelos Animais de Doenças , Estradiol/sangue , Feminino , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Camundongos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Progesterona/sangue , Receptores LHRH/agonistas , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/metabolismo
14.
Mol Cell Endocrinol ; 337(1-2): 24-35, 2011 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-21277349

RESUMO

The present study investigates the mechanism by which obesity associated rise in leptin and insulin levels cause anovulation in vespertilionid bat, Scotophilus heathii. In the ovary of S. heathii, leptin and insulin receptors were mainly localized in interstitial and thecal cells and in the granulosa cells of primary follicles suggesting its possible role in androgen synthesis and follicular development. Adiposity associated increase in circulating leptin level down regulate ovarian LH-receptor expression and produce characteristic morphological changes in the antral follicles, such as hypertrophy of granulosa cells and a sharp decline in the rate of proliferation as well as apoptosis in the antral follicles. These follicles are referred as unique antral follicle. The in vitro study confirmed the in vivo findings that the high dose of leptin suppresses apoptosis and LH receptors. The present study thus showed that the adiposity associated increase in leptin during the first phase of follicular development inhibits folliculogenesis and simultaneously suppresses both follicular proliferation and apoptosis by reducing sensitivity to gonadotropin stimulation and decreasing circulating LH levels.


Assuntos
Quirópteros/crescimento & desenvolvimento , Leptina/sangue , Folículo Ovariano/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Quirópteros/metabolismo , Feminino , Insulina/sangue , Hormônio Luteinizante/sangue , Obesidade/fisiopatologia , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Receptores do LH/metabolismo , Reprodução/fisiologia , Estações do Ano
15.
Cell Metab ; 11(4): 273-85, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20374960

RESUMO

The endocannabinoid system (ECS) plays a critical role in obesity development. The pharmacological blockade of cannabinoid receptor type 1 (CB(1)) has been shown to reduce body weight and to alleviate obesity-related metabolic disorders. An unsolved question is at which anatomical level CB(1) modulates energy balance and the mechanisms involved in its action. Here, we demonstrate that CB(1) receptors expressed in forebrain and sympathetic neurons play a key role in the pathophysiological development of diet-induced obesity. Conditional mutant mice lacking CB(1) expression in neurons known to control energy balance, but not in nonneuronal peripheral organs, displayed a lean phenotype and resistance to diet-induced obesity. This phenotype results from an increase in lipid oxidation and thermogenesis as a consequence of an enhanced sympathetic tone and a decrease in energy absorption. In conclusion, CB(1) signaling in the forebrain and sympathetic neurons is a key determinant of the ECS control of energy balance.


Assuntos
Metabolismo Energético/fisiologia , Obesidade/fisiopatologia , Prosencéfalo/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/fisiologia , Sistema Nervoso Simpático/metabolismo , Análise de Variância , Animais , Temperatura Corporal , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/genética , Imunofluorescência , Hiperfagia/complicações , Immunoblotting , Hibridização In Situ , Camundongos , Camundongos Knockout , Modelos Biológicos , Obesidade/etiologia , Obesidade/metabolismo , Prosencéfalo/fisiologia , Receptor CB1 de Canabinoide/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Termogênese/fisiologia , Microtomografia por Raio-X
16.
J Steroid Biochem Mol Biol ; 118(1-2): 107-16, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897034

RESUMO

The aim of this study was to evaluate the role of melatonin in ovarian activity of Scotophilus heathi particularly in reference to changes in steroidogenesis and steroid receptor expression during the anovulatory period of delayed ovulation. Female S. heathi showed an increased circulating melatonin level during the period of delayed ovulation in winter coinciding with the increased androstenedione (A(4)) levels, body fat and ovarian androgen receptor expression. The circulating melatonin level decreased to a low level after winter during the period of ovulation in March which also coincided with the decreased circulating A(4) levels and body fat. The circulating estrogen (E(2)) showed two peaks corresponding with the two waves of follicular development in November and February. Both the isoforms of progesterone receptor (PR), PR-A and PR-B, remained high throughout the follicular development, but expression of PR-A declined significantly during the ovulation. The treatment with melatonin, both in vitro and in vivo, significantly increased progesterone and A(4), but not the estradiol synthesis by the ovaries of S. heathi. The study further suggested that the increased androgens during winter may be primarily due to the stimulatory effect of melatonin on steroidogenic enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity. Therefore the increased circulating melatonin level in S. heathi during winter delay (inhibits) ovulation through increased androgen synthesis, but suppression of estradiol synthesis.


Assuntos
Quirópteros/fisiologia , Melatonina/farmacologia , Ovulação/efeitos dos fármacos , Estações do Ano , Esteroides/biossíntese , 3-Hidroxiesteroide Desidrogenases/metabolismo , Tecido Adiposo/anatomia & histologia , Androstenodiona/biossíntese , Androstenodiona/sangue , Animais , Sangue/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Estradiol/biossíntese , Estradiol/sangue , Feminino , Expressão Gênica/efeitos dos fármacos , Leptina/sangue , Hormônio Luteinizante/farmacologia , Melatonina/sangue , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovulação/sangue , Ovulação/fisiologia , Progesterona/biossíntese , Progesterona/sangue , Receptores Androgênicos/metabolismo , Receptores de Progesterona/metabolismo , Esteroides/sangue , Testosterona/biossíntese , Testosterona/sangue , Células Tecais/metabolismo
17.
Comp Biochem Physiol A Mol Integr Physiol ; 155(3): 392-400, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20026417

RESUMO

The role for melatonin in glucose homeostasis and insulin resistance is not very clear and has recently been an active area of investigation. The present study investigated the role of melatonin in seasonal accumulation of adipose tissue in Scotophilus heathi, with particular reference to its role in glucose homeostasis and development of insulin resistance. The circulating melatonin levels correlated positively (p<0.05) with the changes in body mass due to fat accumulation and circulating insulin level, but correlated negatively with the blood glucose level in S. heathi. The bats showed high circulating blood glucose levels and impaired glucose tolerance during the period of fat deposition suggesting insulin resistance condition which improves after winter when most of the fat has been utilized as a metabolic fuel. The high circulating melatonin levels during the period of maximum body fat at the beginning of winter prepare the bats for winter dormancy by modulating the glucose homeostasis through affecting blood glucose levels, muscle and liver glycogen stores, insulin receptor and glucose transporter 4 (GLUT 4) expression. This is also confirmed by in vivo study in which melatonin injection improves the glucose tolerance, increases muscle insulin receptor and GLUT 4 expression, and enhances glucose clearance from the blood. The results of present study further showed that the effect of melatonin injection on the blood glucose levels is determined by the metabolic state of the bats and may protect from decrease in blood glucose level during extreme starvation, however, melatonin when injected during fed state increases glucose clearance from the blood. In summary, the present study suggested that melatonin interferes with the glucose homeostasis through modulating intracellular glucose transport and may protect bats from hypoglycemia during winter dormancy.


Assuntos
Quirópteros/fisiologia , Glucose/metabolismo , Hibernação/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Melatonina/metabolismo , Estações do Ano , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Quirópteros/sangue , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Insulina/sangue , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Melatonina/sangue , Melatonina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Receptor de Insulina/metabolismo
18.
J Exp Zool A Ecol Genet Physiol ; 309(2): 94-110, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18203145

RESUMO

The aim of this study was to determine the effect of changes in body mass, fat reserves and feeding activity on circulating levels of lipids, glucose, protein and metabolic hormones in a vespertilionid bat, Scotophilus heathi. Furthermore, the relationship between changes in metabolic factors and hormones with the unique reproductive features of female S. heathi was also examined. The results of this study showed annual variation in body mass, fat reserve and feeding activity, which correlated significantly with circulating levels of lipids, protein and metabolic hormones. Increased corticosterone level during September-October in S. heathi promotes increased feeding activity, which in turn induces hyperinsulinemia in S. heathi during November. Hyperinsulinemia together with low body temperature in November facilitates fat accumulation in bat. Coinciding with the period of fat accumulation raises serum leptin level, which has been demonstrated to suppress ovarian activities thus causing delayed ovulation in S. heathi. Circulating levels of lipids were high during winter dormancy, which may provide energy to stored sperms. The study thus suggests that the unique reproductive features of female vespertilionid bat are strongly linked to fat deposition.


Assuntos
Adiposidade/fisiologia , Quirópteros/fisiologia , Animais , Glicemia , Proteínas Sanguíneas , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Metabolismo Energético , Comportamento Alimentar , Feminino , Glicogênio , Insetos , Insulina/sangue , Leptina/sangue , Lipídeos/sangue , Reprodução/fisiologia , Estações do Ano , Hormônios Tireóideos/sangue , Ureia/sangue
19.
Reproduction ; 133(1): 165-76, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17244743

RESUMO

The aim of the study was to evaluate the seasonal variation in serum leptin levels in a natural population of the female bat, Scotophilus heathi and their relationship to the changes in the body mass, serum insulin level, and ovarian activity. Circulating leptin level varied significantly over the season and correlated positively with the changes in body mass, and circulating insulin and androstenedione (A4) levels. Circulating leptin concentrations showed two peaks; one coincides with the maximum fat accumulation prior to winter dormancy, whereas the second shorter peak coincides with late pregnancy. The in vivo study in S. heathi showed that the increased circulating leptin level during winter dormancy coincides with the decreased expression of ovarian steroidogenic acute regulatory (StAR) protein, and low circulating estradiol (E2) level. At the same time, increased circulating leptin level coincides with increased expression of ovarian insulin receptor and high circulating A4 level. The low circulating leptin level during preovulatory period coincides with the increase in StAR protein but decrease in insulin receptor protein. The in vitro study confirmed the in vivo observations of inhibitory effect of leptin on LH induced StAR expression and E2 production, whereas the stimulatory effect of leptin (high dose) on LH induced expression of insulin receptor protein and A4 production. However, pharmacological dose of leptin produced inhibitory effect on the expression of insulin receptor protein. The results of the present study thus suggest that high circulating leptin level during winter dormancy promotes adiposity and impairs ovarian activity by suppressing StAR-mediated E2 production as well as by enhancing insulin receptor-mediated A4 synthesis thereby contributing anovulatory condition of delayed ovulation in S. heathi.


Assuntos
Adiposidade/fisiologia , Quirópteros/metabolismo , Hibernação/fisiologia , Leptina/sangue , Ovário/metabolismo , Androstenodiona/biossíntese , Androstenodiona/sangue , Animais , Anovulação/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Estradiol/biossíntese , Feminino , Immunoblotting , Insulina/farmacologia , Leptina/farmacologia , Hormônio Luteinizante/farmacologia , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Gravidez , Progesterona/biossíntese , Receptor de Insulina/análise , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...