Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 4): 114766, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370813

RESUMO

The present study aimed at the synthesis of cobalt oxide nanoparticles (CONPs) mediated by leaf extract of Muntingia calabura using a rapid and simple method and evaluation of its photocatalytic activity against methylene blue (MB) dye. UV-vis absorption spectrum showed multiple peaks with an optical band gap of 2.05 eV, which was concordant with the literature. FESEM image signified the irregular-shaped, clusters of CONPs, and EDX confirmed the existence of the Co and O elements. The sharp peaks of XRD spectrum corroborated the crystalline nature with a mean crystallite size of 27.59 nm. Raman spectrum substantiated the purity and structural defects. XPS signified the presence of Co in different oxidation states. FTIR image revealed the presence of various phytochemicals present on the surface and the bands at 515 and 630 cm-1 designated the characteristic Co-O bonds. VSM studies confirmed the antiferromagnetic property with negligible hysteresis. The high BET specific surface area (10.31 m2/g) and the mesoporous nature of the pores of CONPs signified the presence of a large number of active sites, thus, indicating their suitability as photocatalysts. The CONPs degraded 88% of 10 mg/L MB dye within 300 min of exposure to sunlight. The degradation of MB dye occurred due to the formation of hydroxyl free radicals on exposure to sunlight, which followed first-order kinetics with rate constant of 0.0065 min-1. Hence, the CONPs synthesized herein could be applied to degrade other xenobiotics and the treatment of industrial wastewater and environmentally polluted samples.


Assuntos
Cobalto , Nanopartículas , Óxidos , Nanopartículas/química , Azul de Metileno/química
2.
Polymers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956552

RESUMO

Hard-magnetic soft materials belong to a class of the highly deformable magneto-active elastomer family of smart materials and provide a promising technology for flexible electronics, soft robots, and functional metamaterials. When hard-magnetic soft actuators are driven by a multiple-step input signal (Heaviside magnetic field signal), the residual oscillations exhibited by the actuator about equilibrium positions may limit their performance and accuracy in practical applications. This work aims at developing a command-shaping scheme for alleviating residual vibrations in a magnetically driven planar hard-magnetic soft actuator. The control scheme is based on the balance of magnetic and elastic forces at a critical point in an oscillation cycle. The equation governing the dynamics of the actuator is devised using the Euler-Lagrange equation. The constitutive behaviour of the hard-magnetic soft material is modeled using the Gent model of hyperelasticity, which accounts for the strain-stiffening effects. The dynamic response of the actuator under a step input signal is obtained by numerically solving the devised dynamic governing equation using MATLAB ODE solver. To demonstrate the applicability of the developed command-shaping scheme, a thorough investigation showing the effect of various parameters such as material damping, the sequence of desired equilibrium positions, and polymer chain extensibility on the performance of the proposed scheme is performed. The designed control scheme is found to be effective in controlling the motion of the hard-magnetic soft actuator at any desired equilibrium position. The present study can find its potential application in the design and development of an open-loop controller for hard-magnetic soft actuators.

3.
IEEE Trans Med Imaging ; 40(12): 3413-3423, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34086562

RESUMO

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public.


Assuntos
Algoritmos , Núcleo Celular , Humanos , Processamento de Imagem Assistida por Computador
4.
Artif Intell Med ; 98: 59-76, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31521253

RESUMO

OBJECTIVE: The neonatal period of a child is considered the most crucial phase of its physical development and future health. As per the World Health Organization, India has the highest number of pre-term births [1], with over 3.5 million babies born prematurely, and up to 40% of them are babies with low birth weights, highly prone to a multitude of diseases such as Jaundice, Sepsis, Apnea, and other Metabolic disorders. Apnea is the primary concern for caretakers of neonates in intensive care units. The real-time medical data is known to be noisy and nonlinear and to address the resultant complexity in classification and prediction of diseases; there is a need for optimizing learning models to maximize predictive performance. Our study attempts to optimize neural network architectures to predict the occurrence of apneic episodes in neonates, after the first week of admission to Neonatal Intensive Care Unit (NICU). The primary contribution of this study is the formulation and description of a set of generic steps involved in selecting various model-specific, training and hyper-parametric optimization algorithms, as well as model architectures for optimal predictive performance on complex and noisy medical datasets. METHODS: The data used for the study being inherently complex and noisy, Kernel Principal Component Analysis (PCA) is used to reduce dataset dimensionality for the analysis such as interpretations and visualization of the dataset. Hyper-parametric and parametric optimization, in different categories, are considered, including learning rate updater algorithms, regularization methods, activation functions, gradient descent algorithms and depth of the network, based on their performance on the validation set, to obtain a holistically optimized neural network, that best model the given complex medical dataset. Deep Neural Network Architectures such as Deep Multilayer Perceptron's, Stacked Auto-encoders and Deep Belief Networks are employed to model the dataset, and their performance is compared to the optimized neural network obtained from the parametric exploration. Further, the results are compared with Support Vector Machine (SVM), K Nearest Neighbor, Decision Tree (DT) and Random Forest (RF) algorithms. RESULTS: The results indicate that the optimized eight layer Multilayer Perceptron (MLP) model, with Adam Decay and Stochastic Gradient Descent (AUC 0.82) can outperform the conventional machine learning models, and perform comparably to the Deep Auto-encoder model (AUC 0.83) in predicting the presence of apnea in neonates. CONCLUSION: The study shows that an MLP model can undergo significant improvements in predictive performance, by the proposed step-wise optimization. The optimized MLP is proved to be as accurate as deep neural network models such as Deep Belief Networks and Deep Auto-encoders for noisy and nonlinear data sets, and outperform all conventional models like Support Vector Machine (SVM), Decision Tree (DT), K Nearest Neighbor and Random Forest (RF) algorithms. The generic nature of the proposed step-wise optimization provides a framework to optimize neural networks on such complex nonlinear datasets. The investigated models can help neonatologists as a diagnostic tool.


Assuntos
Apneia/epidemiologia , Regras de Decisão Clínica , Aprendizado Profundo , Unidades de Terapia Intensiva Neonatal , Algoritmos , Peso ao Nascer , Conjuntos de Dados como Assunto , Árvores de Decisões , Idade Gestacional , Frequência Cardíaca , Humanos , Índia/epidemiologia , Lactente Extremamente Prematuro , Recém-Nascido , Recém-Nascido Prematuro , Redes Neurais de Computação , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...