Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Pept Lett ; 27(7): 582-592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31880239

RESUMO

BACKGROUND: Enterococcus faecalis (Ef) infections are becoming dreadfully common in hospital environments. Infections caused by Ef are difficult to treat because of its acquired resistance to different class of antibiotics, making it a multidrug resistant bacteria. Key pathogenic factor of Ef includes its ability to form biofilm on the surface of diagnostic and other medical devices. Sortase A (SrtA) is a cysteine transpeptidase which plays a pivotal role in the formation of biofilm in Ef, hence, it is considered as an important enzyme for the pathogenesis of Ef. Thus, inhibition of (SrtA) will affect biofilm formation, which will reduce its virulence and eventually Ef infection will be abridged. OBJECTIVE: To find potential inhibitors of Enterococcus faecalis Sortase A (EfSrtA) through insilico and in-vitro methods. METHODS: Gene coding for EfSrtA was cloned, expressed and purified. Three-dimensional model of EfSrtA was created using Swiss-Model workspace. In-silico docking studies using Autodock vina and molecular dynamics simulations of the modelled structures using Gromacs platform were performed to explore potential lead compounds against EfSrtA. In-vitro binding experiments using spectrofluorometric technique was carried out to confirm and validate the study. RESULTS: In-silico docking and in-vitro binding experiments revealed that curcumin, berberine and myricetin bound to EfSrtA at nanomolar concentrations with high affinity. CONCLUSION: This is a first structural report of EfSrtA with curcumin, berberine and myricetin. Taking in account the herbal nature of these compounds, the use of these compounds as inhibitors will be advantageous. This study validated curcumin, berberine and myricetin as potential inhibitors of EfSrtA.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Biofilmes , Cisteína Endopeptidases , Farmacorresistência Bacteriana Múltipla/fisiologia , Enterococcus faecalis/fisiologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Aminoaciltransferases/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
2.
Phys Chem Chem Phys ; 19(19): 11881-11891, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28435943

RESUMO

A nano-grained layer including line defects was formed on the surface of a Ti alloy (Tialloy, Ti-6Al-4V ELI). Then, the micro- and nano-grained Tialloy with the formation of TiO2 on its top surface was coated with a bioactive Ta layer with or without incorporating an antibacterial agent of Ag that was manufactured by magnetron sputtering. Subsequently, the influence of the charged defects (the defects that can be electrically charged on the surface) on the interfacial bonding strength and hardness of the surface system was studied via an electronic model. Thereby, material systems of (i) Ta coated micro-grained titanium alloy (Ta/MGTialloy), (ii) Ta coated nano-grained titanium alloy (Ta/NGTialloy), (iii) TaAg coated micro-grained titanium alloy (TaAg/MGTialloy) and (iv) TaAg coated nano-grained titanium alloy (TaAg/NGTialloy) were formed. X-ray photoelectron spectroscopy was used to probe the electronic structure of the micro- and nano-grained Tialloy, and so-formed heterostructures. The thin film/substrate interfaces exhibited different satellite peak intensities. The satellite peak intensity may be related to the interfacial bonding strength and hardness of the surface system. The interfacial layer of TaAg/NGTialloy exhibited the highest satellite intensity and maximum hardness value. The increased bonding strength and hardness in the TaAg/NGTialloy arises due to the negative core charge of the dislocations and neighbor space charge accumulation, as well as electron accumulation in the created semiconductor phases of larger band gap at the interfacial layer. These two factors generate interfacial polarization and enhance the satellite intensity. Consequently, the interfacial bonding strength and hardness of the surface system are improved by the formation of mixed covalent-ionic bonding structures around the dislocation core area and the interfacial layer. The bonding strength relationship by in situ XPS on the metal/TiO2 interfacial layer may be examined with other noble metals and applied in diverse fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...