Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1393538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912348

RESUMO

The world's oceans are challenged by climate change linked warming with typically highly populated coastal areas being particularly susceptible to these effects. Many studies of climate change on the marine environment use large, short-term temperature manipulations that neglect factors such as long-term adaptation and seasonal cycles. In this study, a Baltic Sea 'heated' bay influenced by thermal discharge since the 1970s from a nuclear reactor (in relation to an unaffected nearby 'control' bay) was used to investigate how elevated temperature impacts surface water microbial communities and activities. 16S rRNA gene amplicon based microbial diversity and population structure showed no difference in alpha diversity in surface water microbial communities, while the beta diversity showed a dissimilarity between the bays. Amplicon sequencing variant relative abundances between the bays showed statistically higher values for, e.g., Ilumatobacteraceae and Burkholderiaceae in the heated and control bays, respectively. RNA transcript-derived activities followed a similar pattern in alpha and beta diversity with no effect on Shannon's H diversity but a significant difference in the beta diversity between the bays. The RNA data further showed more elevated transcript counts assigned to stress related genes in the heated bay that included heat shock protein genes dnaKJ, the co-chaperonin groS, and the nucleotide exchange factor heat shock protein grpE. The RNA data also showed elevated oxidative phosphorylation transcripts in the heated (e.g., atpHG) compared to control (e.g., atpAEFB) bay. Furthermore, genes related to photosynthesis had generally higher transcript numbers in the control bay, such as photosystem I (psaAC) and II genes (psbABCEH). These increased stress gene responses in the heated bay will likely have additional cascading effects on marine carbon cycling and ecosystem services.

2.
NPJ Biofilms Microbiomes ; 9(1): 41, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349512

RESUMO

Biofilm formation is a common adaptation for microbes in energy-limited conditions such as those prevalent in the vast deep terrestrial biosphere. However, due to the low biomass and the inaccessible nature of subsurface groundwaters, the microbial populations and genes involved in its formation are understudied. Here, a flow-cell system was designed to investigate biofilm formation under in situ conditions in two groundwaters of contrasting age and geochemistry at the Äspö Hard Rock Laboratory, Sweden. Metatranscriptomes showed Thiobacillus, Sideroxydans, and Desulforegula to be abundant and together accounted for 31% of the transcripts in the biofilm communities. Differential expression analysis highlighted Thiobacillus to have a principal role in biofilm formation in these oligotrophic groundwaters by being involved in relevant processes such as the formation of extracellular matrix, quorum sensing, and cell motility. The findings revealed an active biofilm community with sulfur cycling as a prominent mode of energy conservation in the deep biosphere.


Assuntos
Água Subterrânea , Thiobacillus , Biofilmes , Suécia
3.
ISME J ; 17(6): 855-869, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977742

RESUMO

Besides long-term average temperature increases, climate change is projected to result in a higher frequency of marine heatwaves. Coastal zones are some of the most productive and vulnerable ecosystems, with many stretches already under anthropogenic pressure. Microorganisms in coastal areas are central to marine energy and nutrient cycling and therefore, it is important to understand how climate change will alter these ecosystems. Using a long-term heated bay (warmed for 50 years) in comparison with an unaffected adjacent control bay and an experimental short-term thermal (9 days at 6-35 °C) incubation experiment, this study provides new insights into how coastal benthic water and surface sediment bacterial communities respond to temperature change. Benthic bacterial communities in the two bays reacted differently to temperature increases with productivity in the heated bay having a broader thermal tolerance compared with that in the control bay. Furthermore, the transcriptional analysis showed that the heated bay benthic bacteria had higher transcript numbers related to energy metabolism and stress compared to the control bay, while short-term elevated temperatures in the control bay incubation experiment induced a transcript response resembling that observed in the heated bay field conditions. In contrast, a reciprocal response was not observed for the heated bay community RNA transcripts exposed to lower temperatures indicating a potential tipping point in community response may have been reached. In summary, long-term warming modulates the performance, productivity, and resilience of bacterial communities in response to warming.


Assuntos
Mudança Climática , Ecossistema , Temperatura , Temperatura Alta , Bactérias/genética
4.
Front Microbiol ; 13: 873281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755995

RESUMO

Coastal marine ecosystems are some of the most diverse natural habitats while being highly vulnerable in the face of climate change. The combination of anthropogenic influence from land and ongoing climate change will likely have severe effects on the environment, but the precise response remains uncertain. This study compared an unaffected "control" Baltic Sea bay to a "heated" bay that has undergone artificial warming from cooling water release from a nuclear power plant for ~50 years. This heated the water in a similar degree to IPCC SSP5-8.5 predictions by 2100 as natural systems to study temperature-related climate change effects. Bottom water and surface sediment bacterial communities and their biogeochemical processes were investigated to test how future coastal water warming alters microbial communities; shifts seasonal patterns, such as increased algae blooming; and influences nutrient and energy cycling, including elevated respiration rates. 16S rRNA gene amplicon sequencing and geochemical parameters demonstrated that heated bay bottom water bacterial communities were influenced by increased average temperatures across changing seasons, resulting in an overall Shannon's H diversity loss and shifts in relative abundances. In contrast, Shannon's diversity increased in the heated surface sediments. The results also suggested a trend toward smaller-sized microorganisms within the heated bay bottom waters, with a 30% increased relative abundance of small size picocyanobacteria in the summer (June). Furthermore, bacterial communities in the heated bay surface sediment displayed little seasonal variability but did show potential changes of long-term increased average temperature in the interplay with related effects on bottom waters. Finally, heated bay metabolic gene predictions from the 16S rRNA gene sequences suggested raised anaerobic processes closer to the sediment-water interface. In conclusion, climate change will likely alter microbial seasonality and diversity, leading to prolonged and increased algae blooming and elevated respiration rates within coastal waters.

5.
ISME Commun ; 2(1): 21, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938692

RESUMO

Increased ocean temperature associated with climate change is especially intensified in coastal areas and its influence on microbial communities and biogeochemical cycling is poorly understood. In this study, we sampled a Baltic Sea bay that has undergone 50 years of warmer temperatures similar to RCP5-8.5 predictions due to cooling water release from a nuclear power plant. The system demonstrated reduced oxygen concentrations, decreased anaerobic electron acceptors, and higher rates of sulfate reduction. Chemical analyses, 16S rRNA gene amplicons, and RNA transcripts all supported sediment anaerobic reactions occurring closer to the sediment-water interface. This resulted in higher microbial diversities and raised sulfate reduction and methanogenesis transcripts, also supporting increased production of toxic sulfide and the greenhouse gas methane closer to the sediment surface, with possible release to oxygen deficient waters. RNA transcripts supported prolonged periods of cyanobacterial bloom that may result in increased climate change related coastal anoxia. Finally, while metatranscriptomics suggested increased energy production in the heated bay, a large number of stress transcripts indicated the communities had not adapted to the increased temperature and had weakened resilience. The results point to a potential feedback loop, whereby increased temperatures may amplify negative effects at the base of coastal biochemical cycling.

6.
Sci Rep ; 11(1): 23384, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862412

RESUMO

Coastal aquatic systems suffer from nutrient enrichment, which results in accelerated eutrophication effects due to increased microbial metabolic rates. Climate change related prolonged warming will likely accelerate existing eutrophication effects, including low oxygen concentrations. However, how the interplay between these environmental changes will alter coastal ecosystems is poorly understood. In this study, we compared 16S rRNA gene amplicon based bacterial communities in coastal sediments of a Baltic Sea basin in November 2013 and 2017 at three sites along a water depth gradient with varying bottom water oxygen histories. The shallow site showed changes of only 1.1% in relative abundance of bacterial populations in 2017 compared to 2013, while the deep oxygen-deficient site showed up to 11% changes in relative abundance including an increase of sulfate-reducing bacteria along with a 36% increase in organic matter content. The data suggested that bacterial communities in shallow sediments were more resilient to seasonal oxygen decline, while bacterial communities in sediments subjected to long-term hypoxia seemed to be sensitive to oxygen changes and were likely to be under hypoxic/anoxic conditions in the future. Our data demonstrate that future climate changes will likely fuel eutrophication related spread of low oxygen zones.


Assuntos
Bactérias/classificação , Eutrofização , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Países Bálticos , Mudança Climática , DNA Bacteriano/genética , DNA Ribossômico/genética , Aquecimento Global , Oxigênio/metabolismo , Filogenia , Água/metabolismo
7.
Cell Transplant ; 27(7): 1031-1038, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29945463

RESUMO

BACKGROUND: Effective digestive enzymes are crucial for successful islet isolation. Supplemental proteases are essential because they synergize with collagenase for effective pancreatic digestion. The activity of these enzymes is critically dependent on the presence of Ca2+ ions at a concentration of 5-10 mM. The present study aimed to determine the Ca2+ concentration during human islet isolation and to ascertain whether the addition of supplementary Ca2+ is required to maintain an optimal Ca2+ concentration during the various phases of the islet isolation process. METHODS: Human islets were isolated according to standard methods and isolation parameters. Islet quality control and the number of isolations fulfilling standard transplantation criteria were evaluated. Ca2+ was determined by using standard clinical chemistry routines. Islet isolation was performed with or without addition of supplementary Ca2+ to reach a Ca2+ of 5 mM. RESULTS: Ca2+ concentration was markedly reduced in bicarbonate-based buffers, especially if additional bicarbonate was used to adjust the pH as recommended by the Clinical Islet Transplantation Consortium. A major reduction in Ca2+ concentration was also observed during pancreatic enzyme perfusion, digestion, and harvest. Additional Ca2+ supplementation of media used for dissolving the enzymes and during digestion, perfusion, and harvest was necessary in order to obtain the concentration recommended for optimal enzyme activity and efficient liberation of a large number of islets from the human pancreas. CONCLUSIONS: Ca2+ is to a large extent consumed during clinical islet isolation, and in the absence of supplementation, the concentration fell below that recommended for optimal enzyme activity. Ca2+ supplementation of the media used during human pancreas digestion is necessary to maintain the concentration recommended for optimal enzyme activity. Addition of Ca2+ to the enzyme blend has been implemented in the standard isolation protocols in the Nordic Network for Clinical Islet Transplantation.


Assuntos
Cálcio/metabolismo , Pâncreas/metabolismo , Peptídeo Hidrolases/metabolismo , Coleta de Tecidos e Órgãos/métodos , Adulto , Idoso , Bicarbonatos/metabolismo , Colagenases/metabolismo , Seleção do Doador , Feminino , Humanos , Concentração de Íons de Hidrogênio , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Pessoa de Meia-Idade , Pâncreas/citologia , Controle de Qualidade
8.
Clin Cancer Res ; 23(19): 5846-5857, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28536305

RESUMO

Purpose: Pancreatic cancer is a severe indication with short expected survival despite surgery and/or combination chemotherapeutics. Checkpoint blockade antibodies are approved for several cancer indications, but pancreatic cancer has remained refractory. However, there are clinical data suggesting that stimulation of the CD40 pathway may be of interest for these patients. Oncolytic viruses armed with immunostimulatory genes represent an interesting approach. Herein, we present LOAd703, a designed adenovirus armed with trimerized CD40L and 4-1BBL that activates the CD40 and 4-1BB pathways, respectively. As many cells in the tumor stroma, including stellate cells and the infiltrating immune cells, express CD40 and some 4-1BB, we hypothesize that LOAd703 activates immunity and simultaneously modulates the biology of the tumor stroma.Experimental Design: Tumor, stellate, endothelial, and immune cells were infected by LOAd703 and investigated by flow cytometry, proteomics, and functional analyses.Results: LOAd703-infected pancreatic cell lines were killed by oncolysis, and the virus was more effective than standard-of-care gemcitabine. In in vivo xenograft models, LOAd703 efficiently reduced established tumors and could be combined with gemcitabine for additional effect. Infected stellate and tumor cells reduced factors that promote tumor growth (Spp-1, Gal-3, HGF, TGFß and collagen type I), while chemokines were increased. Molecules involved in lymphocyte migration were upregulated on infected endothelial cells. Dendritic cells were robustly stimulated by LOAd703 to produce costimulators, cytokines and chemokines, and such DCs potently expanded both antigen-specific T cells and NK cells.Conclusions: LOAd703 is a potent immune activator that modulates the stroma to support antitumor responses. Clin Cancer Res; 23(19); 5846-57. ©2017 AACR.


Assuntos
Antígenos CD40/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Neoplasias Pancreáticas/terapia , Adenoviridae/genética , Animais , Antígenos CD40/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Ativação Linfocitária/imunologia , Camundongos , Vírus Oncolíticos/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/virologia , Transdução de Sinais/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Transplant Direct ; 1(5): e19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27500221

RESUMO

UNLABELLED: Effective digestive enzymes are crucial for successful islet isolation. Supplemental proteases are essential as they synergize with collagenase for effective pancreas digestion. The presence of tryptic-like activity has been implicated in efficient enzyme blends and the present study aimed to evaluate if addition of clostripain, an enzyme with tryptic-like activity, could improve efficacy of the islet isolation procedure. METHODS: Clostripain was added to the enzyme blend just before pancreas perfusion. Islets were isolated per standard method and numerous isolation parameters, islet quality control, and the number of isolations fulfilling standard transplantation criteria were evaluated. Two control organs per clostripain organ were chosen by blindly matching against body mass index, cold ischemia time, hemoglobin A1c, donor sex, and donor age. RESULTS: There were no differences in pancreas weight, dissection time, digestion time, harvest time, percent digested pancreas, or total pellet volume before islet purification between control or clostripain pancreases. Glucose-stimulated insulin release results were similar between groups. Total isolation islet equivalents, purified tissue volume and islet equivalents/g pancreas as well as fulfillment of transplantation criteria favored clostripain processed pancreases. CONCLUSIONS: The addition of clostripain to the enzyme blend soundly improved islet yields and transplantation rates. It gently aided pancreas digestion and maintained proper islet functionality. The addition of clostripain to the enzyme blend has now been implemented into standard isolation protocols at the isolation centers in Uppsala and in Oslo.

11.
Cell Transplant ; 20(5): 775-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21054939

RESUMO

Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.


Assuntos
Desinfecção , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Animais , Células Cultivadas , Quimiocina CCL2/metabolismo , Humanos , Insulina/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Camundongos Nus , Soro/química , Soro/microbiologia , Tromboplastina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA