Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(10): e0140954, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496494

RESUMO

In this paper, we present a systematic transition scheme for a large class of ordinary differential equations (ODEs) into Boolean networks. Our transition scheme can be applied to any system of ODEs whose right hand sides can be written as sums and products of monotone functions. It performs an Euler-like step which uses the signs of the right hand sides to obtain the Boolean update functions for every variable of the corresponding discrete model. The discrete model can, on one hand, be considered as another representation of the biological system or, alternatively, it can be used to further the analysis of the original ODE model. Since the generic transformation method does not guarantee any property conservation, a subsequent validation step is required. Depending on the purpose of the model this step can be based on experimental data or ODE simulations and characteristics. Analysis of the resulting Boolean model, both on its own and in comparison with the ODE model, then allows to investigate system properties not accessible in a purely continuous setting. The method is exemplarily applied to a previously published model of the bovine estrous cycle, which leads to new insights regarding the regulation among the components, and also indicates strongly that the system is tailored to generate stable oscillations.


Assuntos
Corpo Lúteo/fisiologia , Ciclo Estral/fisiologia , Modelos Estatísticos , Folículo Ovariano/fisiologia , Análise de Sistemas , Animais , Bovinos , Dinoprostona/fisiologia , Feminino , Hormônio Foliculoestimulante/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Luteinizante/fisiologia , Prostaglandinas F/fisiologia
2.
J Theor Biol ; 321: 8-27, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23206386

RESUMO

The paper presents a differential equation model for the feedback mechanisms between gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), development of follicles and corpus luteum, and the production of estradiol (E2), progesterone (P4), inhibin A (IhA), and inhibin B (IhB) during the female menstrual cycle. Compared to earlier human cycle models, there are three important differences: The model presented here (a) does not involve any delay equations, (b) is based on a deterministic modeling of the GnRH pulse pattern, and (c) contains less differential equations and less parameters. These differences allow for a faster simulation and parameter identification. The focus is on modeling GnRH-receptor binding, in particular, by inclusion of a pharmacokinetic/pharmacodynamic (PK/PD) model for a GnRH agonist, Nafarelin, and a GnRH antagonist, Cetrorelix, into the menstrual cycle model. The final mathematical model describes the hormone profiles (LH, FSH, P4, E2) throughout the menstrual cycle of 12 healthy women. It correctly predicts hormonal changes following single and multiple dose administration of Nafarelin or Cetrorelix at different stages in the cycle.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Ciclo Menstrual/fisiologia , Disponibilidade Biológica , Membrana Celular/metabolismo , Simulação por Computador , Corpo Lúteo/metabolismo , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/farmacocinética , Humanos , Hormônio Luteinizante/sangue , Modelos Biológicos , Nafarelina/administração & dosagem , Nafarelina/farmacocinética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...