Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 560(7719): 461-465, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135528

RESUMO

The hallmark property of two-dimensional topological insulators is robustness of quantized electronic transport of charge and energy against disorder in the underlying lattice1. That robustness arises from the fact that, in the topological bandgap, such transport can occur only along the edge states, which are immune to backscattering owing to topological protection. However, for sufficiently strong disorder, this bandgap closes and the system as a whole becomes topologically trivial: all states are localized and all transport vanishes in accordance with Anderson localization2,3. The recent suggestion4 that the reverse transition can occur was therefore surprising. In so-called topological Anderson insulators, it has been predicted4 that the emergence of protected edge states and quantized transport can be induced, rather than inhibited, by the addition of sufficient disorder to a topologically trivial insulator. Here we report the experimental demonstration of a photonic topological Anderson insulator. Our experiments are carried out in an array of helical evanescently coupled waveguides in a honeycomb geometry with detuned sublattices. Adding on-site disorder in the form of random variations in the refractive index of the waveguides drives the system from a trivial phase into a topological one. This manifestation of topological Anderson insulator physics shows experimentally that disorder can enhance transport rather than arrest it.

2.
Opt Lett ; 39(21): 6130-3, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361296

RESUMO

Supersymmetric (SUSY) optical structures display a number of intriguing properties that can lead to a variety of potential applications, ranging from perfect global phase matching to highly efficient mode conversion and novel multiplexing schemes. Here, we experimentally investigate the scattering characteristics of SUSY photonic lattices. We directly observe the light dynamics in such systems and compare the reflection/transmission properties of SUSY partner structures. In doing so, we demonstrate that discrete settings constitute a promising testbed for studying the different facets of optical supersymmetry.

3.
Nat Commun ; 5: 3698, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24739256

RESUMO

Originally developed in the context of quantum field theory, the concept of supersymmetry can be used to systematically design a new class of optical structures. In this work, we demonstrate how key features arising from optical supersymmetry can be exploited to control the flow of light for mode-division multiplexing applications. Superpartner configurations are experimentally realized in coupled optical networks, and the corresponding light dynamics in such systems are directly observed. We show that supersymmetry can be judiciously used to remove the fundamental mode of a multimode optical structure while establishing global phase-matching conditions for the remaining set of modes. Along these lines, supersymmetry may serve as a promising platform for versatile optical components with desirable properties and functionalities.


Assuntos
Disseminação de Informação/métodos , Luz , Modelos Teóricos , Óptica e Fotônica/métodos , Física/métodos , Teoria Quântica
4.
Opt Lett ; 38(9): 1488-90, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23632527

RESUMO

We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.

5.
Opt Express ; 21(1): 927-34, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388986

RESUMO

We show, numerically and experimentally, that the presence of weak disorder results in an enhanced energy distribution of an initially localized wave-packet, in one- and two-dimensional finite lattices. The addition of a focusing nonlinearity facilitates the spreading effect even further by increasing the wave-packet effective size. We find a clear transition between the regions of enhanced spreading (weak disorder) and localization (strong disorder).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...