Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270818

RESUMO

Cultivated tomato (Solanum lycopersicum L.) is susceptible to abiotic stresses, including drought and chilling stress, while its wild relative (Solanum habrochaites) exhibits tolerance to many abiotic stresses. Chilling roots to 6°C induces rapid-onset water stress by impeding water movement from roots to shoots. Wild S. habrochaites responds to root chilling by closing stomata and maintaining shoot turgor, while cultivated tomato fails to close stomata and wilts. This phenotypic response (shoot turgor maintenance under root chilling) is controlled by a major QTL stm9 on chromosome 9 from S. habrochaites that was previously high-resolution mapped to a 0.32 cM region, but its effects on transcriptional regulation were unknown. Here we used paired near isogenic lines (NILs) differing only for the presence or absence of the S. habrochaites introgression containing stm9 in an otherwise S. lycopersicum background to investigate global transcriptional regulation in response to rapid-onset water stress induced by root chilling. NIL175 contains the S. habrochaites introgression and exhibits tolerance to root chilling stress, while NIL163 does not contain the introgression and is susceptible. RNA from roots of the two NILs was obtained at five time points during exposure to root chilling and mRNA-Seq performed. Differential expression analysis and hierarchical clustering of transcript levels were used to determine patterns of and changes in mRNA levels. Our results show that the transcriptional response of roots exposed to chilling stress is complex, with both overlapping and unique responses in tolerant and susceptible lines. In general, susceptible NIL 163 had a more complex transcriptional response to root chilling, while NIL175 exhibited a more targeted response to the imposed stress. Our evidence suggests that both the tolerant and susceptible NILs may be primed for response to root-chilling, with many of these response genes located on chromosome 9. Furthermore, serine/threonine kinase activity likely has an important role in the root chilling response of tolerant NIL175.

2.
Theor Appl Genet ; 128(9): 1713-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26044122

RESUMO

QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.


Assuntos
Mapeamento Cromossômico , Raízes de Plantas/fisiologia , Locos de Características Quantitativas , Solanum/genética , Água/fisiologia , Temperatura Baixa , Secas , Ligação Genética , Genótipo , Solanum lycopersicum/genética , Fenótipo , Brotos de Planta/fisiologia , Estômatos de Plantas/fisiologia , Solanum/fisiologia , Estresse Fisiológico
3.
G3 (Bethesda) ; 5(2): 219-33, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25504736

RESUMO

Previously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits. Subsequently, higher-resolution mapping with sub-NILs detected multiple P. infestans resistance QTL within this 9.4-cM region of chromosome 11. In our present study, these same sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over 2 years. The horticultural trait QTL originally detected by fine mapping each fractionated into two or more QTL at higher resolution. A total of 34 QTL were detected across all traits, with 14% exhibiting significant QTL × environment interactions (QTL × E). QTL for many traits were co-located, suggesting either pleiotropic effects or tight linkage among genes controlling these traits. Recombination in the pericentromeric region of the introgression between markers TG147 and At4g10050 was suppressed to approximately 29.7 Mbp per cM, relative to the genomewide average of 750 kbp per cM. The genetic architecture of many of the horticultural and P. infestans resistance traits that mapped within this chromosome 11 S. habrochaites region is complex. Complicating factors included fractionation of QTL, pleiotropy or tight linkage of QTL for multiple traits, pericentromeric chromosomal location(s), and/or QTL × E. High-resolution mapping of QTL in this region would be needed to determine which specific target QTL could be useful in breeding cultivated tomato.


Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Phytophthora infestans , Doenças das Plantas/genética , Solanum/genética , Ligação Genética , Genótipo , Fenótipo , Locos de Características Quantitativas
4.
G3 (Bethesda) ; 3(12): 2131-46, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24122052

RESUMO

When the allele of a wild species at a quantitative trait locus (QTL) conferring a desirable trait is introduced into cultivated species, undesirable effects on other traits may occur. These negative phenotypic effects may result from the presence of wild alleles at other closely linked loci that are transferred along with the desired QTL allele (i.e., linkage drag) and/or from pleiotropic effects of the desired allele. Previously, a QTL for resistance to Phytophthora infestans on chromosome 5 of Solanum habrochaites was mapped and introgressed into cultivated tomato (S. lycopersicum). Near-isogenic lines (NILs) were generated and used for fine-mapping of this resistance QTL, which revealed coincident or linked QTL with undesirable effects on yield, maturity, fruit size, and plant architecture traits. Subsequent higher-resolution mapping with chromosome 5 sub-NILs revealed the presence of multiple P. infestans resistance QTL within this 12.3 cM region. In our present study, these sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over the course of two years. Each previously detected single horticultural trait QTL fractionated into two or more QTL. A total of 41 QTL were detected across all traits, with ∼30% exhibiting significant QTL × environment interactions. Colocation of QTL for multiple traits suggests either pleiotropy or tightly linked genes control these traits. The complex genetic architecture of horticultural and P. infestans resistance trait QTL within this S. habrochaites region of chromosome 5 presents challenges and opportunities for breeding efforts in cultivated tomato.


Assuntos
Cromossomos de Plantas , Ligação Genética , Phytophthora infestans/patogenicidade , Locos de Características Quantitativas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum/genética , Análise de Variância , Produtos Agrícolas/genética , Resistência à Doença/genética , Frutas/genética , Doenças das Plantas/microbiologia
5.
Am J Bot ; 100(10): 1991-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24070859

RESUMO

PREMISE OF THE STUDY: Cultivated tomato, Solanum lycopersicum, suffers chilling induced wilting because water movement through its roots decreases with declining soil temperatures. Certain wild tomato species exhibit resistance to chilling-induced wilting, but the extent of this chilling tolerance in wild tomatoes is not known. • METHODS: We measured shoot wilting during root chilling in wild Solanum accessions from habitats differing in elevation, temperature, and precipitation. We also measured shoot wilting during root chilling in introgression lines (ILs) with chromosome 9 segments collinear to the shoot turgor maintenance QTL stm9 region from chilling-tolerant S. habrochaites, chilling and drought-tolerant S. lycopersicoides, or drought-tolerant S. pennellii. • KEY RESULTS: Wild tomato species, which experience chilling temperatures (<10°C) in their native habitat, maintain shoot turgor under root chilling. Among accessions of S. lycopersicum var. cerasiforme, a typically chilling sensitive species, shoot turgor maintenance during root chilling was correlated with the precipitation of the native habitat. By contrast, S. pennellii, a species that is typically drought adapted, did not maintain turgor under root chilling. Grafted plants with roots containing S. habrochaites and S. lycopersicoides introgressions improved shoot turgor maintenance under root chilling. • CONCLUSIONS: Resistance to chilling-induced water stress is an important adaptation to chilling temperatures in wild tomatoes. There is some overlap in adaptation to drought and chilling stress in some tomato species. Root-based resistance to chilling-induced water stress in wild tomatoes may involve orthologous gene(s).


Assuntos
Temperatura Baixa , Desidratação , Ecossistema , Brotos de Planta/fisiologia , Solanum lycopersicum/fisiologia , Altitude , Cromossomos de Plantas/genética , Ecótipo , Genótipo , Endogamia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Especificidade da Espécie
6.
G3 (Bethesda) ; 2(10): 1145-59, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23050225

RESUMO

Cultivated tomato (Solanum lycopersicum) is susceptible to late blight, a major disease caused by Phytophthora infestans, but quantitative resistance exists in the wild tomato species S. habrochaites. Previously, we mapped several quantitative trait loci (QTL) from S. habrochaites and then introgressed each individually into S. lycopersicum. Near-isogenic lines (NILs) were developed, each containing a single introgressed QTL on chromosome 5 or 11. NILs were used to create two recombinant sub-NIL populations, one for each target chromosome region, for higher-resolution mapping. The sub-NIL populations were evaluated for foliar and stem resistance to P. infestans in replicated field experiments over two years, and in replicated growth chamber experiments for resistance to three California isolates. Each of the original single QTL on chromosomes 5 and 11 fractionated into between two and six QTL for both foliar and stem resistance, indicating a complex genetic architecture. The majority of QTL from the field experiments were detected in multiple locations or years, and two of the seven QTL detected in growth chambers were co-located with QTL detected in field experiments, indicating stability of some QTL across environments. QTL that confer foliar and stem resistance frequently co-localized, suggesting that pleiotropy and/or tightly linked genes control the trait phenotypes. Other QTL exhibited isolate-specificity and QTL × environment interactions. Map-based comparisons between QTL mapped in this study and Solanaceae resistance genes/QTL detected in other published studies revealed multiple cases of co-location, suggesting conservation of gene function.


Assuntos
Phytophthora infestans/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Análise de Variância , Cromossomos de Plantas , Ligação Genética , Solanum lycopersicum/parasitologia , Mapeamento Físico do Cromossomo
7.
Annu Rev Phytopathol ; 48: 247-68, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19400646

RESUMO

Quantitative disease resistance (QDR) has been observed within many crop plants but is not as well understood as qualitative (monogenic) disease resistance and has not been used as extensively in breeding. Mapping quantitative trait loci (QTLs) is a powerful tool for genetic dissection of QDR. DNA markers tightly linked to quantitative resistance loci (QRLs) controlling QDR can be used for marker-assisted selection (MAS) to incorporate these valuable traits. QDR confers a reduction, rather than lack, of disease and has diverse biological and molecular bases as revealed by cloning of QRLs and identification of the candidate gene(s) underlying QRLs. Increasing our biological knowledge of QDR and QRLs will enhance understanding of how QDR differs from qualitative resistance and provide the necessary information to better deploy these resources in breeding. Application of MAS for QRLs in breeding for QDR to diverse pathogens is illustrated by examples from wheat, barley, common bean, tomato, and pepper. Strategies for optimum deployment of QRLs require research to understand effects of QDR on pathogen populations over time.


Assuntos
Produtos Agrícolas/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Imunidade Inata/genética , Doenças das Plantas/imunologia
8.
BMC Genomics ; 8: 414, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-17997849

RESUMO

BACKGROUND: Several high-throughput technologies can measure in parallel the abundance of many mRNA transcripts within a sample. These include the widely-used microarray as well as the more recently developed methods based on sequence tag abundances such as the Massively Parallel Signature Sequencing (MPSS) technology. A comparison of microarray and MPSS technologies can help to establish the metrics for data comparisons across these technology platforms and determine some of the factors affecting the measurement of mRNA abundances using different platforms. RESULTS: We compared transcript abundance (gene expression) measurement data obtained using Affymetrix and Agilent microarrays with MPSS data. All three technologies were used to analyze the same set of mRNA samples; these samples were extracted from various wild type Arabidopsis thaliana tissues and floral mutants. We calculated correlations and used clustering methodology to compare the normalized expression data and expression ratios across samples and technologies. Abundance expression measurements were more similar between different samples measured by the same technology than between the same sample measured by different technologies. However, when expression ratios were employed, samples measured by different technologies were found to cluster together more frequently than with abundance expression levels.Furthermore, the two microarray technologies were more consistent with each other than with MPSS. We also investigated probe-position effects on Affymetrix data and tag-position effects in MPSS. We found a similar impact on Affymetrix and MPSS measurements, which suggests that these effects were more likely a characteristic of the RNA sample rather than technology-specific biases. CONCLUSION: Comparisons of transcript expression ratios showed greater consistency across platforms than measurements of transcript abundance. In addition, for measurements based on abundances, technology differences can mask the impact of biological differences between samples and tissues.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Análise por Conglomerados , Processamento Eletrônico de Dados , Expressão Gênica , Genes de Plantas , Sondas Moleculares/fisiologia , Moldes Genéticos
9.
BMC Plant Biol ; 7: 56, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17956627

RESUMO

BACKGROUND: Nucleotide binding site-leucine rich repeat (NBS-LRR)-encoding genes comprise the largest class of plant disease resistance genes. The 149 NBS-LRR-encoding genes and the 58 related genes that do not encode LRRs represent approximately 0.8% of all ORFs so far annotated in Arabidopsis ecotype Col-0. Despite their prevalence in the genome and functional importance, there was little information regarding expression of these genes. RESULTS: We analyzed the expression patterns of approximately 170 NBS-LRR-encoding and related genes in Arabidopsis Col-0 using multiple analytical approaches: expressed sequenced tag (EST) representation, massively parallel signature sequencing (MPSS), microarray analysis, rapid amplification of cDNA ends (RACE) PCR, and gene trap lines. Most of these genes were expressed at low levels with a variety of tissue specificities. Expression was detected by at least one approach for all but 10 of these genes. The expression of some but not the majority of NBS-LRR-encoding and related genes was affected by salicylic acid (SA) treatment; the response to SA varied among different accessions. An analysis of previously published microarray data indicated that ten NBS-LRR-encoding and related genes exhibited increased expression in wild-type Landsberg erecta (Ler) after flagellin treatment. Several of these ten genes also showed altered expression after SA treatment, consistent with the regulation of R gene expression during defense responses and overlap between the basal defense response and salicylic acid signaling pathways. Enhancer trap analysis indicated that neither jasmonic acid nor benzothiadiazole (BTH), a salicylic acid analog, induced detectable expression of the five NBS-LRR-encoding genes and one TIR-NBS-encoding gene tested; however, BTH did induce detectable expression of the other TIR-NBS-encoding gene analyzed. Evidence for alternative mRNA polyadenylation sites was observed for many of the tested genes. Evidence for alternative splicing was found for at least 12 genes, 11 of which encode TIR-NBS-LRR proteins. There was no obvious correlation between expression pattern, phylogenetic relationship or genomic location of the NBS-LRR-encoding and related genes studied. CONCLUSION: Transcripts of many NBS-LRR-encoding and related genes were defined. Most were present at low levels and exhibited tissue-specific expression patterns. Expression data are consistent with most Arabidopsis NBS-LRR-encoding and related genes functioning in plant defense responses but do not preclude other biological roles.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica , Genes de Plantas , Leucina/genética , Nucleotídeos/metabolismo , Sequências Repetitivas de Aminoácidos , Sítios de Ligação , DNA Complementar , Etiquetas de Sequências Expressas , Leucina/química , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Plant Cell ; 19(7): 2099-110, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17630278

RESUMO

Little is known about how gene expression variation within a given species controls phenotypic variation under different treatments or environments. Here, we surveyed the transcriptome response of seven diverse Arabidopsis thaliana accessions in response to two treatments: the presence and absence of exogenously applied salicylic acid (SA), an important signaling molecule in plant defense. A factorial experiment was conducted with three biological replicates per accession with and without applications of SA and sampled at three time points posttreatment. Transcript level data from Affymetrix ATH1 microarrays were analyzed on both per-gene and gene-network levels to detect expression level polymorphisms associated with SA response. Significant variation in transcript levels for response to SA was detected among the accessions, with relatively few genes responding similarly across all accessions and time points. Twenty-five of 54 defined gene networks identified from other microarray studies (pathogen-challenged Columbia [Col-0]) showed a significant response to SA in one or more accessions. A comparison of gene-network relationships in our data to the pathogen-challenged Col-0 data demonstrated a higher-order conservation of linkages between defense response gene networks. Cvi-1 and Mt-0 appeared to have globally different SA responsiveness in comparison to the other five accessions. Expression level polymorphisms for SA response were abundant at both individual gene and gene-network levels in the seven accessions, suggesting that natural variation for SA response is prevalent in Arabidopsis.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Variação Genética , Ácido Salicílico/farmacologia , Transcrição Gênica/efeitos dos fármacos , Análise de Variância , Bases de Dados de Ácidos Nucleicos , Redes Reguladoras de Genes , Genes de Plantas , Genótipo
11.
Genetics ; 175(3): 1441-50, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17179097

RESUMO

The genetic architecture of transcript-level variation is largely unknown. The genetic determinants of transcript-level variation were characterized in a recombinant inbred line (RIL) population (n = 211) of Arabidopsis thaliana using whole-genome microarray analysis and expression quantitative trait loci (eQTL) mapping of transcript levels as expression traits (e-traits). Genetic control of transcription was highly complex: one-third of the quantitatively controlled transcripts/e-traits were regulated by cis-eQTL, and many trans-eQTL mapped to hotspots that regulated hundreds to thousands of e-traits. Several thousand eQTL of large phenotypic effect were detected, but almost all (93%) of the 36,871 eQTL were associated with small phenotypic effects (R(2) < 0.3). Many transcripts/e-traits were controlled by multiple eQTL with opposite allelic effects and exhibited higher heritability in the RILs than their parents, suggesting nonadditive genetic variation. To our knowledge, this is the first large-scale global eQTL study in a relatively large plant mapping population. It reveals that the genetic control of transcript level is highly variable and multifaceted and that this complexity may be a general characteristic of eukaryotes.


Assuntos
Arabidopsis/genética , Variação Genética , Locos de Características Quantitativas , Precursores de RNA/genética , Mapeamento Cromossômico , Padrões de Herança/genética , Análise em Microsséries
12.
BMC Bioinformatics ; 7: 308, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16780591

RESUMO

BACKGROUND: Gene expression microarrays allow the quantification of transcript accumulation for many or all genes in a genome. This technology has been utilized for a range of investigations, from assessments of gene regulation in response to genetic or environmental fluctuation to global expression QTL (eQTL) analyses of natural variation. Current analysis techniques facilitate the statistical querying of individual genes to evaluate the significance of a change in response, also known as differential expression. Since genes are also known to respond as groups due to their membership in networks, effective approaches are needed to investigate transcriptome variation as related to gene network responses. RESULTS: We describe a statistical approach that is capable of assessing higher-order a priori defined gene network response, as measured by microarrays. This analysis detected significant network variation between two Arabidopsis thaliana accessions, Bay-0 and Shahdara. By extending this approach, we were able to identify eQTLs controlling network responses for 18 out of 20 a priori-defined gene networks in a recombinant inbred line population derived from accessions Bay-0 and Shahdara. CONCLUSION: This approach has the potential to be expanded to facilitate direct tests of the relationship between phenotypic trait and transcript genetic architecture. The use of a priori definitions for network eQTL identification has enormous potential for providing direction toward future eQTL analyses.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Locos de Características Quantitativas/genética , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , Análise por Conglomerados , Flavonóis/metabolismo , Perfilação da Expressão Gênica , Glucosinolatos/metabolismo , Modelos Genéticos , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Genome Res ; 16(6): 787-95, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16702412

RESUMO

Expression microarrays hybridized with RNA can simultaneously provide both phenotypic (gene expression) and genotypic (marker) data. We developed two types of genetic markers from Affymetrix GeneChip expression data to generate detailed haplotypes for 148 recombinant inbred lines (RILs) derived from Arabidopsis thaliana accessions Bayreuth and Shahdara. Gene expression markers (GEMs) are based on differences in transcript levels that exhibit bimodal distributions in segregating progeny, while single feature polymorphism (SFP) markers rely on differences in hybridization to individual oligonucleotide probes. Unlike SFPs, GEMs can be derived from any type of DNA-based expression microarray. Our method identifies SFPs independent of a gene's expression level. Alleles for each GEM and SFP marker were ascertained with GeneChip data from parental accessions as well as RILs; a novel algorithm for allele determination using RIL distributions capitalized on the high level of genetic replication per locus. GEMs and SFP markers provided robust markers in 187 and 968 genes, respectively, which allowed estimation of gene order consistent with that predicted from the Col-0 genomic sequence. Using microarrays on a population to simultaneously measure gene expression variation and obtain genotypic data for a linkage map will facilitate expression QTL analyses without the need for separate genotyping. We have demonstrated that gene expression measurements from microarrays can be leveraged to identify polymorphisms across the genome and can be efficiently developed into genetic markers that are verifiable in a large segregating RIL population. Both marker types also offer opportunities for massively parallel mapping in unsequenced and less studied species.


Assuntos
Arabidopsis/genética , Expressão Gênica , Haplótipos , Polimorfismo Genético , Genes de Plantas , Marcadores Genéticos , Heterozigoto , Endogamia , Análise de Sequência com Séries de Oligonucleotídeos
14.
Genetics ; 172(2): 1179-89, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16204207

RESUMO

Differential gene expression controls variation in numerous plant traits, such as flowering time and plant/pest interactions, but little is known about the genomic distribution of the determinants of transcript levels and their associated variation. Affymetrix ATH1 GeneChip microarrays representing 22,810 genes were used to survey the transcriptome of seven Arabidopsis thaliana accessions in the presence and absence of exogenously applied salicylic acid (SA). These accessions encompassed approximately 80% of the moderate- to high-frequency nucleotide polymorphisms in Arabidopsis. A factorial design, consisting of three biological replicates per accession for the two treatments at three time points (4, 28, and 52 hr post-treatment), and a total of 126 microarrays were used. Between any pair of Arabidopsis accessions, we detected on average 2234 genes (ranging from 1428 to 3334) that were significantly differentially expressed under the conditions of this experiment, using a split-plot analysis of variance. Upward of 6433 genes were differentially expressed between at least one pair of accessions. These results suggest that analysis of additional genetic, developmental, and environmental conditions may show that a significant fraction of the Arabidopsis genome is differentially expressed. Examination of sequence diversity demonstrated a significant positive association with diversity in gene expression.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Variação Genética , Genoma de Planta , Análise de Variância , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético
15.
Theor Appl Genet ; 111(5): 898-905, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16075210

RESUMO

Many plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10 degrees C but above 0 degrees C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum. The QTL with the greatest phenotypic effect on stm was located in a 28 cM region on chromosome 9 (designated stm 9), and enhanced chilling-tolerance was conferred by the presence of the Lycopersicon hirsutum allele at this QTL. Here, near-isogenic lines (NILs) were used to verify the effect of stm 9, and recombinant sub-NILs were used to fine map its position. Replicated experiments were performed with NILs and sub-NILs in a refrigerated hydroponic tank in the greenhouse. Sub-NIL data was analyzed using least square means separations, marker-genotype mean t-tests, and composite interval mapping. A dominant QTL controlling shoot turgor maintenance under root chilling was confirmed on chromosome 9 using both NILs and sub-NILs. Furthermore, sub-NILs permitted localization of stm 9 to a 2.7 cM interval within the original 28 cM QTL region. If the presence of the L. hirsutum allele at stm 9 also confers chilling-tolerance in L. esculentum plants grown under field conditions, it has the potential to expand the geographic areas in which cultivated tomato can be grown for commercial production.


Assuntos
Aclimatação , Mapeamento Cromossômico , Locos de Características Quantitativas , Solanaceae/genética , Solanum lycopersicum/genética , Sequência de Bases , Primers do DNA , Solanum lycopersicum/fisiologia , Fenótipo , Solanaceae/fisiologia
16.
J Econ Entomol ; 98(3): 988-95, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16022331

RESUMO

Two tomato inbred backcross line (IBL) populations, derived from crosses between aphid-susceptible Lycopersicon esculentum Mill. 'Peto 95-43' X resistant wild L. pennellii Corr (D'arcy) accession LA716, and Peto 95-43 X resistant wild L. hirsutum f. glabratum Mull accession LA407, were evaluated in replicated field experiments for resistance to potato aphid, Macrosiphum euphorbiae (Thomas), and green peach aphid, Myzus persicae (Sulzer). Aphid infestation scores for each IBL and control (LA716, LA407, Peto 95-43, and susceptible 'Alta') plot were recorded weekly for 5 and 9 wk during the summers of 2000 and 2001, respectively. Aphid infestation scores from leaflets were used to calculate area under the infestation pressure curve (AUIPC), a measure of aphid infestation throughout the growing season, for each IBL and control. Score AUIPC was highly correlated with actual aphid count AUIPC, indicating that scores accurately reflected aphid infestation. Score AUIPC was also highly correlated across both years (2000 and 2001) and locations. Low score AUIPC was significantly correlated with larger plant size and sprawling, indeterminate plant growth habit. Seven IBLs, LA716, and LA407 were significantly more resistant to aphids (lower score AUIPC) than susceptible parent Peto 95-43 in both years. Two IBLs, 1034 and 1051, were not significantly different from resistant LA407 for score AUIPC in both years. The seven aphid-resistant IBLs identified here can be useful as donor parent material for resistance breeding efforts in cultivated tomato.


Assuntos
Afídeos , Controle Biológico de Vetores , Solanum lycopersicum/genética , Animais , Genótipo , Endogamia
17.
Genome ; 47(3): 475-92, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15190365

RESUMO

Quantitative trait loci (QTLs) for resistance to Phytophthora infestans (late blight) were mapped in tomato. Reciprocal backcross populations derived from cultivated Lycopersicon esculentum x wild Lycopersicon hirsutum (BC-E, backcross to L. esculentum; BC-H, backcross to L. hirsutum) were phenotyped in three types of replicated disease assays (detached-leaflet, whole-plant, and field). Linkage maps were constructed for each BC population with RFLPs. Resistance QTLs were identified on all 12 tomato chromosomes using composite interval mapping. Six QTLs in BC-E (lb1a, lb2a, lb3, lb4, lb5b, and lb11b) and two QTLs in BC-H (lb5ab and lb6ab) were most consistently detected in replicated experiments or across assay methods. Lycopersicon hirsutum alleles conferred resistance at all QTLs except lb2a. Resistance QTLs coincided with QTLs for inoculum droplet dispersal on leaves, a trait in L. hirsutum that may contribute to resistance, and dispersal was mainly associated with leaf resistance. Some P. infestans resistance QTLs detected in tomato coincided with chromosomal locations of previously mapped R genes and QTLs for resistance to P. infestans in potato, suggesting functional conservation of resistance within the Solanaceae.


Assuntos
Phytophthora/patogenicidade , Locos de Características Quantitativas , Solanum lycopersicum/microbiologia , Solanum tuberosum/microbiologia , Polimorfismo de Fragmento de Restrição
18.
Genome ; 47(3): 510-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15190368

RESUMO

Cultivated tomato (L. esculentum L.) germplasm exhibits limited genetic variation compared with wild Lycopersicon species. Amplified fragment length polymorphism (AFLP) markers were used to evaluate genetic variation among 74 cultivars, primarily from California, and to fingerprint germplasm to determine if cultivar-specific patterns could be obtained. All 74 cultivars were genotyped using 26 AFLP primer combinations; of the 1092 bands scored, 102 AFLP bands (9.3%) were polymorphic. Pair-wise genetic similarity coefficients (Jaccard and Nei-Li) were calculated. Jaccard coefficients varied from 0.16 to 0.98 among cultivar pairs, and 72% of pair-wise comparisons exceeded 0.5. UPGMA (unweighted pair-group method with arithmetic averaging) clustering and principle component analysis revealed four main clusters, I-IV; most modern hybrid cultivars grouped in II, whereas most vintage cultivars grouped in I. Clusters III and IV contained three and two cultivars, respectively. Some groups of cultivars closely related by pedigree exhibited high bootstrap values, but lower values (<50%) were obtained for cluster II and its four subgroups. Unique fingerprints for all 74 cultivars were obtained by a minimum of seven AFLP primer pairs, despite inclusion of some closely related cultivars. This study demonstrated that AFLP markers are effective for obtaining unique fingerprints of, and assessing genetic diversity among, tomato cultivars.


Assuntos
Variação Genética , Polimorfismo Genético , Solanum lycopersicum/genética , Sequência de Bases , Primers do DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...