Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr ; : 114169, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944188

RESUMO

OBJECTIVES: To profile the gut microbiome in infants with congenital heart disease undergoing cardiac surgery compared with matched infants and to investigate the association with growth (weight, length, and head circumference). STUDY DESIGN: A prospective study in the Cardiac Intensive Care Unit at Children's Healthcare of Atlanta and newborn nursery within the Emory Healthcare system. Characteristics including weight, length, head circumference, and surgical variables were collected. Fecal samples were collected pre-surgery (T1), post-surgery (T2), and before discharge (T3), and once for controls. 16S rRNA V4 gene was sequenced from fecal samples and classified into taxonomy using Silva v138. RESULTS: There were 34 children with congenital heart disease (cases) and 34 controls. Cases had higher alpha-diversity, and beta-diversity showed significant dissimilarities compared with controls. Gut microbiome was associated with lower weight and smaller head circumference (z-score <2). Lower weight was associated with less Acinetobacter, Clostridioides, Parabacteroides, and Escherichia-Shigella. Smaller head circumference with more Veillonella, less Acinetobacter, and less Parabacteroides. CONCLUSIONS: Significant differences in gut microbiome diversity and abundance were observed between infants with congenital heart disease and control infants. Lower weight and smaller head circumference were associated with distinct gut microbiome patterns. Further study is needed to understand the longitudinal effect of microbial dysbiosis on growth in children with congenital heart disease.

2.
mBio ; 14(2): e0259022, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36779722

RESUMO

Nosocomial infections caused by multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) pathogens are on the rise. However, the virulence strategies employed by these pathogens remain elusive. Here, we study the interaction of ECC clinical isolates with human serum to define how this pathogen evades the antimicrobial action of complement, one of the first lines of host-mediated immune defense. We identified a small number of serum-sensitive strains, including Enterobacter hormaechei strain NR3055, which we exploited for the in vitro selection of serum-resistant clones. Comparative genomics between the serum-sensitive NR3055 strain and the isolated serum-resistant clones revealed a premature stop codon in the wzy gene of the capsular polysaccharide biosynthesis locus of NR3055. The complementation of wzy conferred serum resistance to NR3055, prevented the deposition of complement proteins on the bacterial surface, inhibited phagocytosis by human neutrophils, and rendered the bacteria virulent in a mouse model of peritonitis. Mice exposed to a nonlethal dose of encapsulated NR3055 were protected from subsequent lethal infections by encapsulated NR3055, whereas mice that were previously exposed to unencapsulated NR3055 succumbed to infection. Thus, capsule is a key immune evasion determinant for E. hormaechei, and it is a potential target for prophylactics and therapeutics to combat these increasingly MDR human pathogens. IMPORTANCE Infections caused by antimicrobial resistant bacteria are of increasing concern, especially those due to carbapenem-resistant Enterobacteriaceae pathogens. Included in this group are species of the Enterobacter cloacae complex, regarding which there is a paucity of knowledge on the infection biology of the pathogens, despite their clinical relevance. In this study, we combine techniques in comparative genomics, bacterial genetics, and diverse models of infection to establish capsule as an important mechanism of Enterobacter pathogens to resist the antibacterial activity of serum, a first line of host defense against bacterial infections. We also show that immune memory targeting the Enterobacter capsule protects against lethal infection. The further characterization of Enterobacter infection biology and the immune response to infection are needed for the development of therapies and preventative interventions targeting these highly antibiotic resistant pathogens.


Assuntos
Enterobacter , Infecções por Enterobacteriaceae , Humanos , Camundongos , Animais , Virulência , Enterobacter/genética , Antibacterianos/farmacologia , Polissacarídeos , Testes de Sensibilidade Microbiana , Infecções por Enterobacteriaceae/microbiologia
3.
Infect Immun ; 90(4): e0005622, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35258336

RESUMO

Infections caused by the Gram-positive bacterium Staphylococcus aureus remain a significant health threat globally. The production of bicomponent pore-forming leukocidins plays an important role in S. aureus pathogenesis. Transcriptionally, these toxins are primarily regulated by the Sae and Agr regulatory systems. However, the posttranslational regulation of these toxins is largely unexplored. In particular, one of the leukocidins, LukAB, has been shown to be both secreted into the extracellular milieu and associated with the bacterial cell envelope. Here, we report that a major cell wall hydrolase, autolysin (Atl), controls the sorting of LukAB from the cell envelope to the extracellular milieu, an effect independent of transcriptional regulation. By influencing the sorting of LukAB, Atl modulates S. aureus cytotoxicity toward primary human neutrophils. Mechanistically, we found that the reduction in peptidoglycan cleavage and increased LukAB secretion in the atl mutant can be reversed through the supplementation of exogenous mutanolysin. Altogether, our study revealed that the cell wall hydrolase activity of Atl and the cleavage of peptidoglycan play an important role in controlling the sorting of S. aureus toxins during secretion.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Humanos , Leucocidinas , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano , Infecções Estafilocócicas/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...