Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38785825

RESUMO

Executing flight operations demand that military personnel continuously perform tasks that utilize low- and high-order cognitive functions. The autonomic nervous system (ANS) is crucial for regulating the supply of oxygen (O2) to the brain, but it is unclear how sustained cognitive loads of different complexities may affect this regulation. Therefore, in the current study, ANS responses to low and high cognitive loads in hypoxic and normoxic conditions were evaluated. The present analysis used data from a previously conducted, two-factor experimental design. Healthy subjects (n = 24) aged 19 to 45 years and located near Fort Novosel, AL, participated in the parent study. Over two, 2-h trials, subjects were exposed to hypoxic (14.0% O2) and normoxic (21.0% O2) air while simultaneously performing one, 15-min and one, 10-min simulation incorporating low- and high-cognitive aviation-related tasks, respectively. The tests were alternated across five, 27-min epochs; however, only epochs 2 through 4 were used in the analyses. Heart rate (HR), HR variability (HRV), and arterial O2 saturation were continuously measured using the Warfighter MonitorTM (Tiger Tech Solutions, Inc., Miami, FL, USA), a previously validated armband device equipped with electrocardiographic and pulse oximetry capabilities. Analysis of variance (ANOVA) regression models were performed to compare ANS responses between the low- and high-cognitive-load assessments under hypoxic and normoxic conditions. Pairwise comparisons corrected for familywise error were performed using Tukey's test within and between high and low cognitive loads under each environmental condition. Across epochs 2 through 4, in both the hypoxic condition and the normoxic condition, the high-cognitive-load assessment (MATB-II) elicited heightened ANS activity, reflected by increased HR (+2.4 ± 6.9 bpm) and decreased HRV (-rMSSD: -0.4 ± 2.7 ms and SDNN: -13.6 ± 14.6 ms). Conversely, low cognitive load (ADVT) induced an improvement in ANS activity, with reduced HR (-2.6 ± 6.3 bpm) and increased HRV (rMSSD: +1.8 ± 6.0 ms and SDNN: vs. +0.7 ± 6.3 ms). Similar observations were found for the normoxic condition, albeit to a lower degree. These within-group ANS responses were significantly different between high and low cognitive loads (HR: +5.0 bpm, 95% CI: 2.1, 7.9, p < 0.0001; rMSSD: -2.2 ms, 95% CI: -4.2, -0.2, p = 0.03; SDNN: -14.3 ms, 95% CI: -18.4, -10.1, p < 0.0001) under the hypoxic condition. For normoxia, significant differences in ANS response were only observed for HR (+4.3 bpm, 95% CI: 1.2, 7.4, p = 0.002). Lastly, only high cognitive loads elicited significant differences between hypoxic and normoxic conditions but just for SDNN (-13.3 ms, 95% CI, -17.5, -8.9, p < 0.0001). Our study observations suggest that compared to low cognitive loads, performing high-cognitive-load tasks significantly alters ANS activity, especially under hypoxic conditions. Accounting for this response is critical, as military personnel during flight operations sustain exposure to high cognitive loads of unpredictable duration and frequency. Additionally, this is likely compounded by the increased ANS activity consequent to pre-flight activities and anticipation of combat-related outcomes.

2.
Biology (Basel) ; 12(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37997997

RESUMO

Military aviators endure high cognitive loads and hypoxic environments during flight operations, impacting the autonomic nervous system (ANS). The synergistic effects of these exposures on the ANS, however, are less clear. This study investigated the simultaneous effects of mild hypoxia and high cognitive load on the ANS in military personnel. This study employed a two-factor experimental design. Twenty-four healthy participants aged between 19 and 45 years were exposed to mild hypoxia (14.0% O2), normoxia (21.0% O2), and hyperoxia (33.0% O2). During each epoch (n = 5), participants continuously performed one 15 min and one 10 min series of simulated, in-flight tasks separated by 1 min of rest. Exposure sequences (hypoxia-normoxia and normoxia-hyperoxia) were separated by a 60 min break. Heart rate (HR), heart rate variability (HRV), and O2 saturation (SpO2) were continuously measured via an armband monitor (Warfighter MonitorTM, Tiger Tech Solutions, Inc., Miami, FL, USA). Paired and independent t-tests were used to evaluate differences in HR, HRV, and SpO2 within and between exposure sequences. Survival analyses were performed to assess the timing and magnitude of the ANS responses. Sympathetic nervous system (SNS) activity during hypoxia was highest in epoch 1 (HR: +6.9 bpm, p = 0.002; rMSSD: -9.7 ms, p = 0.003; SDNN: -11.3 ms, p = 0.003; SpO2: -8.4%, p < 0.0000) and appeared to slightly decline with non-significant increases in HRV. During normoxia, SNS activity was heightened, albeit non-significantly, in epoch 1, with higher HR (68.5 bpm vs. 73.0 bpm, p = 0.06), lower HRV (rMSSD: 45.1 ms vs. 38.7 ms, p = 0.09 and SDNN: 52.5 ms vs. 45.1 ms, p = 0.08), and lower SpO2 (-0.7% p = 0.05). In epochs 2-4, HR, HRV, and SpO2 trended towards baseline values. Significant between-group differences in HR, HRV, and O2 saturation were observed. Hypoxia elicited significantly greater HRs (+5.0, p = 0.03), lower rMSSD (-7.1, p = 0.03), lower SDNN (-8.2, p = 0.03), and lower SpO2 (-1.4%, p = 0.002) compared to normoxia. Hyperoxia appeared to augment the parasympathetic reactivation reflected by significantly lower HR, in addition to higher HRV and O2 relative to normoxia. Hypoxia induced a greater ANS response in military personnel during the simultaneous exposure to high cognitive load. The significant and differential ANS responses to varying O2 levels and high cognitive load observed highlight the importance of continuously monitoring multiple physiological parameters during flight operations.

3.
Mil Med ; 182(S1): 210-215, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28291475

RESUMO

OBJECTIVES: Since hypoxia remains one of the most important physiological hazards the aviation environment poses, military aviators are trained to recognize symptoms of hypoxia in order to implement appropriate safety procedures and countermeasures when hypoxia occurs. A widely used commercial instrument for hypoxia training, demonstration, and research is the Reduced Oxygen Breathing Device (ROBD). Here we describe a novel, inexpensive method to use the ROBD's breathing loop pressure (BLP) to measure respiration rate, a critically important response parameter for hypoxia. METHODS: The ROBD can be controlled by a computer to export several variables including BLP, via the ROBD's RS232 port. An archived database was reanalyzed to assess the BLP data. New instrumentation added independent measures of respiration and expired oxygen and carbon dioxide; these measures were integrated with the ROBD output. RESULTS: Analysis of the archived data showed that the BLP reflected realistic breathing patterns. The new instrumentation integrated well with the ROBD, and independently supported the potential of the BLP as a valid measure of respiration. DISCUSSION: The ROBD's BLP data may provide a basis for a reliable, sensitive measure of respiration that is available at no additional cost.


Assuntos
Segurança de Equipamentos/normas , Hipóxia/fisiopatologia , Monitorização Fisiológica/métodos , Mecânica Respiratória/fisiologia , Medicina Aeroespacial/instrumentação , Humanos , Máscaras/normas , Monitorização Fisiológica/normas , Oxigênio/fisiologia
4.
Front Neurol ; 7: 149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708611

RESUMO

INTRODUCTION: Physiological and emotional stressors increase symptoms of concussion in recently injured individuals and both forms of stress-induced symptoms in people recovering from mild traumatic brain injury (mTBI), but who are asymptomatic when not stressed or are at rest. METHODS: Healthy asymptomatic adults (25.0 ± 5.1 years) with a history of mTBI (n = 36) and matched healthy controls (HC) (n = 36) with no mTBI history were exposed to three levels of normobaric hypoxic stress generated with the Reduced Oxygen Breathing Device (ROBD) (Environics, Inc., Tollande, CT, USA), which reduced the percent O2 by mixing sea level air with nitrogen. The ROBD reduced the percent O2 in the breathable air from the normal 21% to 15.5% O2, 14% O2, and 13% O2. Under these conditions: (a) a standard pulse oximeter recorded peripheral oxygen saturation (SpO2) and pulse rate (beats per minute) and (b) the Functional Impairment Tester (FIT) (PMI, Inc., Rockville, MD, USA) recorded saccadic velocity and pupillary response dynamics to a brief light flash. RESULTS: For all three hypoxic stress conditions, the mTBI group had significantly higher SpO2 during the final minute of exposure than did the controls [F(2.17,151.8) = 5.29, p < 0.001, η2 = 0.852] and the rate of SpO2 change over time was significantly shallower for the mTBI than for the controls [F(2.3,161.3) = 2.863, p < 0.001, η2 = 0.569], Greenhouse-Geisser corrected. Overall, mTBI had lower pulse rate but the difference was only significant for the 14% O2 condition. FIT oculomotor measures were not sensitive to group differences. When exposed to mild or moderate normobaric hypoxic stress (15% O2): (1) SpO2 differences emerged between the mTBI and matched HC groups, (2) heart rate trended lower in the mTBI group, and (3) FIT measures were not sensitive to group differences. CONCLUSION: A relatively minor hypoxic challenge can reveal measurable differences in SpO2 and heart rate in otherwise asymptomatic individuals with a history of mTBI.

5.
US Army Med Dep J ; : 97-107, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21805461

RESUMO

This article presents an overview of a contemporary research protocol conducted at the Marine Corps Weapons Training Battalion, Quantico, VA. The study was a comprehensive collaborative research initiative that evaluated a variety of environmental, auditory, and vestibular factors among Marines enrolled in the Breacher Training Course. The length of each course is 2 weeks and involves multiple exposures to blast overpressure and physical shock from ingress strategies used during the training. Observational data were collected pretraining, during training, and posttraining between September and June 2007. There was no change in the way the Marines conducted their training, and all data were collected based on the actual training scenario. The primary objective of this research protocol was to determine if Marines in the Breacher Training Course were at risk of injury during standard training practices. The principal conclusions were that hearing loss was statistically and clinically significant whereas the vestibular findings were overall unremarkable.


Assuntos
Perda Auditiva/epidemiologia , Militares , Doenças Profissionais/epidemiologia , Doenças Vestibulares/epidemiologia , Audiometria de Tons Puros , Traumatismos por Explosões/epidemiologia , Humanos , Emissões Otoacústicas Espontâneas , Equilíbrio Postural , Doenças Vestibulares/fisiopatologia , Acuidade Visual
7.
Res Q Exerc Sport ; 78(3): 171-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17679490

RESUMO

The purpose of this study was to determine the effectiveness of a planned mastery motivational physical play session on physical activity (i.e., heart rate [HR] and physical play intensity [PAHR > 50]) in toddlers (N = 21), as compared to a nonplanned free play session. Participants wore a monitor to measure HR over two, 30 min play conditions. A multivariate analysis of variance was conducted to evaluate the effect of the play conditions. A significant difference between conditions and physiological measures revealed that the mastery motivational physical play session resulted in higher HR and PAHR > 50 when compared to free play. These findings suggest the mastery motivational session resulted in more vigorous physical play in toddlers than free play.


Assuntos
Negro ou Afro-Americano , Frequência Cardíaca/fisiologia , Motivação , Jogos e Brinquedos , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...