Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 16(7): e0010600, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857765

RESUMO

During chronic infection, the single celled parasite, Toxoplasma gondii, can migrate to the brain where it has been associated with altered dopamine function and the capacity to modulate host behavior, increasing risk of neurocognitive disorders. Here we explore alterations in dopamine-related behavior in a new mouse model based on stimulant (cocaine)-induced hyperactivity. In combination with cocaine, infection resulted in heightened sensorimotor deficits and impairment in prepulse inhibition response, which are commonly disrupted in neuropsychiatric conditions. To identify molecular pathways in the brain affected by chronic T. gondii infection, we investigated patterns of gene expression. As expected, infection was associated with an enrichment of genes associated with general immune response pathways, that otherwise limits statistical power to identify more informative pathways. To overcome this limitation and focus on pathways of neurological relevance, we developed a novel context enrichment approach that relies on a customized ontology. Applying this approach, we identified genes that exhibited unexpected patterns of expression arising from the combination of cocaine exposure and infection. These include sets of genes which exhibited dampened response to cocaine in infected mice, suggesting a possible mechanism for some observed behaviors and a neuroprotective effect that may be advantageous to parasite persistence. This model offers a powerful new approach to dissect the molecular pathways by which T. gondii infection contributes to neurocognitive disorders.


Assuntos
Cocaína , Toxoplasma , Animais , Encéfalo/parasitologia , Cocaína/metabolismo , Dopamina , Expressão Gênica , Masculino , Camundongos
2.
Psychopharmacology (Berl) ; 236(5): 1623-1640, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900006

RESUMO

RATIONALE: Researchers in psychiatry and neuroscience are increasingly recognizing the importance of gut-brain communication in mental health. Both genetics and environmental factors influence gut microbiota composition and function. This study examines host-microbe signaling at the gastrointestinal barrier to identify bottom-up mechanisms of microbiota-brain communication. OBJECTIVES: We examined differences in gut microbiota composition and fecal miRNA profiles in BALB/c and C57BL/6 mice, in relation to gastrointestinal homeostasis and evaluated the response to perturbation of the gut microbiota by broad-spectrum antibiotic treatment. METHODS AND RESULTS: Differences in the gut microbiota composition between BALB/c and C57BL/6 mice, evaluated by fecal 16S rRNA gene sequencing, included significant differences in genera Prevotella, Alistipes, Akkermansia, and Ruminococcus. Significant differences in fecal miRNA profiles were determined using the nCounter NanoString platform. A BLASTn analysis identified conserved fecal miRNA target regions in bacterial metagenomes with 14 significant correlations found between fecal miRNA and predicted taxa relative abundance in our dataset. Treatment with broad-spectrum antibiotics for 2 weeks resulted in a host-specific physiological response at the gastrointestinal barrier including a decrease in barrier permeability in BALB/c mice and alterations in the expression of barrier regulating genes in both strains. Genera Parabacteroides and Bacteroides were associated with changes in barrier function. CONCLUSIONS: The results of this study provide insight into how specific taxa influence gut barrier integrity and function. More generally, these data in the context of recent published studies makes a significant contribution to our understanding of host-microbe interactions providing new knowledge that can be harnessed by us and others in future mechanistic studies.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Homeostase/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...