Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702855

RESUMO

Green Fluorescent Proteins (GFPs) are a family of proteins with a disjunct systematic distribution; their biological functions remain speculative for the most part. Here we report studies of 3 closely related species of green sea anemones (Anthopleura) that express GFPs throughout their ectoderm. Individuals of these species maintain facultative symbiosis with zooxanthellae in their endoderm and inhabit the rocky intertidal or shallow subtidal. Thus, they depend on exposure to light to maintain photosynthesis of their symbionts, and simultaneously need to manage stresses associated with this exposure. We present experimental evidence that these sea anemones regulate the amount of GFP in their bodies in response to the surrounding light environment: they increase or reduce GFP when exposed to brighter or dimmer light, respectively, yet they maintain some GFP while in darkness, for surprisingly long periods.

2.
J Anim Ecol ; 86(3): 590-604, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28146325

RESUMO

The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system.


Assuntos
Casearia/fisiologia , Florestas , Herbivoria , Mariposas/fisiologia , Animais , Casearia/crescimento & desenvolvimento , Mudança Climática , Costa Rica , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Salicaceae/crescimento & desenvolvimento , Salicaceae/fisiologia
4.
Biol Lett ; 12(12)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28003517

RESUMO

Changes in predator diversity via extinction and invasion are increasingly widespread and can have important ecological and socio-economic consequences. Anticipating and managing these consequences requires understanding how predators shape ecological communities. Previous predator biodiversity research has focused on post-colonization processes. However, predators can also shape communities by altering patterns of prey habitat selection during colonization. The sensitivity of this non-consumptive top down mechanism to changes in predator diversity is largely unexamined. To address this gap, we examined patterns of dipteran oviposition habitat selection in experimental aquatic habitats in response to varied predator species richness while holding predator abundance constant. Caged predators were used in order to disentangle behavioural oviposition responses to predator cues from potential post-oviposition consumption of eggs and larvae. We hypothesized that because increases in predator richness often result in greater prey mortality than would be predicted from independent effects of predators, prey should avoid predator-rich habitats during colonization. Consistent with this hypothesis, predator-rich habitats received 48% fewer dipteran eggs than predicted, including 60% fewer mosquito eggs and 38% fewer midge eggs. Our findings highlight the potentially important links between predator biodiversity, prey habitat selection and the ecosystem service of pest regulation.


Assuntos
Chironomidae/fisiologia , Culicidae/fisiologia , Animais , Astacoidea , Comportamento Animal , Biodiversidade , Ecossistema , Odonatos , Oviposição , Comportamento Predatório , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...