Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Exp Biol ; 224(Pt 3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33443043

RESUMO

Essential macronutrients are critical to the fitness and survival of animals. Many studies have shown that animals regulate the amount of protein and carbohydrate they eat for optimal performance. Regulation of dietary fat is important but less often studied. Honeybees collect and consume floral pollen to obtain protein and fat but how they achieve the optimal balance of these two macronutrients is presently unknown. Here, using chemically defined diets composed of essential amino acids and lipids (lecithin), we show that adult worker honeybees actively regulate their intake of lipids around optimal values relative to the amount of protein in their diet. We found that broodless, nurse-age worker honeybees consume foods to achieve a ratio between 1:2 and 1:3 for essential amino acids to lipid or ∼1.25:1 protein to fat. Bees fed diets relatively high in fat gained abdominal fat and had enlarged hypopharyngeal glands. In most cases, eating diets high in fat did not result in increased mortality. Importantly, we also discovered that the total quantity of food the bees ate increased when they were given a choice of two diets relatively high in fat, implying that dietary fat influences bee nutritional state in a way that, in turn, influences behaviour. We speculate that dietary fat plays a critical role in maintaining workers in the nurse-like behavioural state independently of the influence of queen pheromone.


Assuntos
Aminoácidos Essenciais , Dieta , Animais , Abelhas , Dieta/veterinária , Gorduras na Dieta , Ingestão de Alimentos , Lipídeos , Pólen
2.
Methods Ecol Evol ; 9(3): 734-743, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29938013

RESUMO

Floral nectar is a reward offered by flowering plants to visiting pollinators. Nectar chemistry is important for understanding plant nutrient allocation and plant-pollinator interactions. However, many plant species are difficult to sample as their flowers are small and produce low amounts of nectar.We compared the effects of different methods of nectar collection on the amino acid composition of flowers with low volumes of nectar. We used five methods to collect nectar from 60 (5 × 12) Calluna vulgaris flowers: microcapillary tubes, a low-volume flower rinse (the micro-rinse method, using 2 µl water), filter paper, a high-volume flower rinse (2 ml water) and a flower wash (2 ml water). We analysed the samples for free amino acids using quantitative UHPLC methods .We found that the micro-rinse method (rinsing the nectary with enough water to only cover the nectary) recovered amino acid proportions similar to raw nectar extracted using microcapillary tubes. The filter paper, 2 ml rinse and 2 ml wash methods measured significantly higher values of free amino acids and also altered the profile of amino acids. We discuss our concerns about the increased contamination risk of the filter paper and high-volume rinse and wash samples from dried nectar across the floral tissue (nectar unavailable to floral visitors), pollen, vascular fluid and cellular fluid.Our study will enable researchers to make informed decisions about nectar collection methods depending on their intended chemical analysis. These methods of sampling will enable researchers to examine a larger array of plant species' flowers to include those with low volumes of nectar.

3.
Methods Ecol Evol ; 9(2): 430-438, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576862

RESUMO

Pollen provides floral visitors with essential nutrients including proteins, lipids, vitamins and minerals. As an important nutrient resource for pollinators, including honeybees and bumblebees, pollen quality is of growing interest in assessing available nutrition to foraging bees. To date, quantifying the protein-bound amino acids in pollen has been difficult and methods rely on large amounts of pollen, typically more than 1 g. More usual is to estimate a crude protein value based on the nitrogen content of pollen, however, such methods provide no information on the distribution of essential and non-essential amino acids constituting the proteins.Here, we describe a method of microwave-assisted acid hydrolysis using low amounts of pollen that allows exploration of amino acid composition, quantified using ultra high performance liquid chromatography (UHPLC), and a back calculation to estimate the crude protein content of pollen.Reliable analysis of protein-bound and free amino acids as well as an estimation of crude protein concentration was obtained from pollen samples as low as 1 mg. Greater variation in both protein-bound and free amino acids was found in pollen sample sizes <1 mg. Due to the variability in recovery of amino acids in smaller sample sizes, we suggest a correction factor to apply to specific sample sizes of pollen in order to estimate total crude protein content.The method described in this paper will allow researchers to explore the composition of amino acids in pollen and will aid research assessing the available nutrition to pollinating animals. This method will be particularly useful in assaying the pollen of wild plants, from which it is difficult to obtain large sample weights.

4.
Environ Pollut ; 206: 494-501, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26284345

RESUMO

A combination of in vitro and in vivo studies on tomato (Lycopersicon esculentum Mill. cv. Triton) revealed that environmentally-relevant levels of ozone (O3) pollution adversely affected pollen germination, germ tube growth and pollen-stigma interactions - pollen originating from plants raised in charcoal-Purafil(®) filtered air (CFA) exhibited reduced germ tube development on the stigma of plants exposed to environmentally-relevant levels of O3. The O3-induced decline in in vivo pollen viability was reflected in increased numbers of non-fertilized and fertilized non-viable ovules in immature fruit. Negative effects of O3 on fertilization occurred regardless of the timing of exposure, with reductions in ovule viability evident in O3 × CFA and CFA × O3 crossed plants. This suggests O3-induced reductions in fertilization were associated with reduced pollen viability and/or ovule development. Fruit born on trusses independently exposed to 100 nmol mol(-1) O3 (10 h d(-1)) from flowering exhibited a decline in seed number and this was reflected in a marked decline in the weight and size of individual fruit - a clear demonstration of the direct consequence of the effects of the pollutant on reproductive processes. Ozone exposure also resulted in shifts in the starch and ascorbic acid (Vitamin C) content of fruit that were consistent with accelerated ripening. The findings of this study draw attention to the need for greater consideration of, and possibly the adoption of weightings for the direct impacts of O3, and potentially other gaseous pollutants, on reproductive biology during 'risk assessment' exercises.


Assuntos
Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Ozônio/farmacologia , Pólen/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Meio Ambiente , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Ozônio/análise , Pólen/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
5.
J Exp Biol ; 218(Pt 5): 793-802, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25617453

RESUMO

Animals carefully regulate the amount of protein that they consume. The quantity of individual essential amino acids (EAAs) obtained from dietary protein depends on the protein source, but how the proportion of EAAs in the diet affects nutrient balancing has rarely been studied. Recent research using the Geometric Framework for Nutrition has revealed that forager honeybees who receive much of their dietary EAAs from floral nectar and not from solid protein have relatively low requirements for dietary EAAs. Here, we examined the nutritional requirements for protein and carbohydrates of foragers of the buff-tailed bumblebee Bombus terrestris. By using protein (sodium caseinate) or an equimolar mixture of the 10 EAAs, we found that the intake target (nutritional optimum) of adult workers depended on the source and proportion of dietary EAAs. When bees consumed caseinate-containing diets in a range of ratios between 1:250 and 1:25 (protein to carbohydrate), they achieved an intake target (IT) of 1:149 (w/w). In contrast to those fed protein, bees fed the EAA diets had an IT more biased towards carbohydrates (1:560 w/w) but also had a greater risk of death than those fed caseinate. We also tested how the dietary source of EAAs affected free AAs in bee haemolymph. Bees fed diets near their IT had similar haemolymph AA profiles, whereas bees fed diets high in caseinate had elevated levels of leucine, threonine, valine and alanine in the haemolymph. We found that like honeybees, bumblebee workers prioritize carbohydrate intake and have a relatively low requirement for protein. The dietary source of EAAs influenced both the ratio of protein/EAA to carbohydrate and the overall amount of carbohydrate eaten. Our data support the idea that EAAs and carbohydrates in haemolymph are important determinants of nutritional state in insects.


Assuntos
Aminoácidos Essenciais/administração & dosagem , Caseínas/administração & dosagem , Carboidratos da Dieta/administração & dosagem , Aminoácidos Essenciais/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Abelhas , Comportamento Animal/fisiologia , Dieta , Feminino , Hemolinfa/química
6.
Amino Acids ; 46(6): 1449-58, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623119

RESUMO

Dietary sources of essential amino acids (EAAs) are used for growth, somatic maintenance and reproduction. Eusocial insect workers such as honeybees are sterile, and unlike other animals, their nutritional needs should be largely dictated by somatic demands that arise from their role within the colony. Here, we investigated the extent to which the dietary requirements of adult worker honeybees for EAAs and carbohydrates are affected by behavioural caste using the Geometric Framework for nutrition. The nutritional optimum, or intake target (IT), was determined by confining cohorts of 20 young bees or foragers to liquid diets composed of specific proportions of EAAs and sucrose. The IT of young, queenless bees shifted from a proportion of EAAs-to-carbohydrates (EAA:C) of 1:50 towards 1:75 over a 2-week period, accompanied by a reduced lifespan on diets high in EAAs. Foragers required a diet high in carbohydrates (1:250) and also had low survival on diets high in EAA. Workers exposed to queen mandibular pheromone lived longer on diets high in EAA, even when those diets contained 5× their dietary requirements. Our data show that worker honeybees prioritize their intake of carbohydrates over dietary EAAs, even when overeating EAAs to obtain sufficient carbohydrates results in a shorter lifespan. Thus, our data demonstrate that even when young bees are not nursing brood and foragers are not flying, their nutritional needs shift towards a diet largely composed of carbohydrates when they make the transition from within-hive duties to foraging.


Assuntos
Aminoácidos Essenciais/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Carboidratos da Dieta/administração & dosagem , Envelhecimento , Aminoácidos Essenciais/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Abelhas , Comportamento Animal/fisiologia , Feminino , Necessidades Nutricionais , Reprodução/fisiologia , Atrativos Sexuais/fisiologia , Sacarose/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...