Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255934

RESUMO

A hypercaloric fatty diet predisposes an individual to metabolic syndrome and cardiovascular complications. Sirtuin1 (SIRT1) belongs to the class III histone deacetylase family and sustains anabolism, mitochondrial biogenesis, and fat distribution. Epididymal white adipose tissue (eWAT) is involved in inflammation, whilst interscapular brown adipose tissue (iBAT) drives metabolism in obese rodents. Melatonin, a pineal indoleamine, acting as a SIRT1 modulator, may alleviate cardiometabolic damage. In the present study, we morphologically characterized the heart, eWAT, and iBAT in male heterozygous SIRT1+/- mice (HET mice) on a high-fat diet (60%E lard) versus a standard rodent diet (8.5% E fat) and drinking melatonin (10 mg/kg) for 16 weeks. Wild-type (WT) male C57Bl6/J mice were similarly fed for comparison. Cardiomyocyte fibrosis and endoplasmic reticulum (ER) stress response worsened in HET mice on a high-fat diet vs. other groups. Lipid peroxidation, ER, and mitochondrial stress were assessed by 4 hydroxy-2-nonenal (4HNE), glucose-regulated protein78 (GRP78), CCAA/enhancer-binding protein homologous protein (CHOP), heat shock protein 60 (HSP60), and mitofusin2 immunostainings. Ultrastructural analysis indicated the prevalence of atypical inter-myofibrillar mitochondria with short, misaligned cristae in HET mice on a lard diet despite melatonin supplementation. Abnormal eWAT adipocytes, crown-like inflammatory structures, tumor necrosis factor alpha (TNFα), and iBAT whitening characterized HET mice on a hypercaloric fatty diet and were maintained after melatonin supply. All these data suggest that melatonin's mechanism of action is strictly linked to full SIRT1 expression, which is required for the exhibition of effective antioxidant and anti-inflammatory properties.


Assuntos
Doenças Cardiovasculares , Melatonina , Masculino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Melatonina/farmacologia , Sirtuína 1/genética , Suplementos Nutricionais
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372945

RESUMO

Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.


Assuntos
Doenças Musculoesqueléticas , Sarcopenia , Idoso , Camundongos , Humanos , Animais , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Atrofia Muscular
3.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139775

RESUMO

A healthy gut provides the perfect habitat for trillions of bacteria, called the intestinal microbiota, which is greatly responsive to the long-term diet; it exists in a symbiotic relationship with the host and provides circulating metabolites, hormones, and cytokines necessary for human metabolism. The gut-heart axis is a novel emerging concept based on the accumulating evidence that a perturbed gut microbiota, called dysbiosis, plays a role as a risk factor in the pathogenesis of cardiovascular disease. Consequently, recovery of the gut microbiota composition and function could represent a potential new avenue for improving patient outcomes. Despite their low absorption, preclinical evidence indicates that polyphenols and their metabolites are transformed by intestinal bacteria and halt detrimental microbes' colonization in the host. Moreover, their metabolites are potentially effective in human health due to antioxidant, anti-inflammatory, and anti-cancer effects. The aim of this review is to provide an overview of the causal role of gut dysbiosis in the pathogenesis of atherosclerosis, hypertension, and heart failure; to discuss the beneficial effects of polyphenols on the intestinal microbiota, and to hypothesize polyphenols or their derivatives as an opportunity to prevent and treat cardiovascular diseases by shaping gut eubiosis.

4.
Biology (Basel) ; 11(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36009828

RESUMO

Although not without subjectivity, the cranial trait scoring method is an easy visual method routinely used by forensic anthropologists in sex estimation. The revision presented by Walker in 2008 has introduced predictive models with good accuracies in the original populations. However, such models may lead to unsatisfactory performances when applied to populations that are different from the original. Therefore, this study aimed to test the sex predictive equations reported by Walker on a contemporary Italian population (177 individuals) in order to evaluate the reliability of the method and to identify potential sexual dimorphic differences between American and Italian individuals. In order to provide new reference data to be used by forensic experts dealing with human remains of modern/contemporary individuals from this geographical area, we designed logistic regression models specific to our population, whose accuracy was evaluated on a validation sample from the same population. In particular, we fitted logistic regression models for all possible combinations of the five cranial morphological traits (i.e., nuchal crest, mastoid process, orbital margin, glabella, and mental eminence). This approach provided a comprehensive set of population-specific equations that can be used in forensic contexts where crania might be retrieved with severe taphonomic damages, thus limiting the application of the method only to a few morphological features. The results proved once again that the effects of secular changes and biogeographic ancestry on sexual dimorphism of cranial morphological traits are remarkable, as highlighted by the low accuracy (from 56% to 78%) of the six Walker's equations when applied to our female sample. Among our fitted models, the one including the glabella and mastoid process was the most accurate since these features are more sexually dimorphic in our population. Finally, our models proved to have high predictive performances in both training and validation samples, with accuracy percentages up to 91.7% for Italian females, which represents a significant success in minimizing the potential misclassifications in real forensic scenarios.

5.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918863

RESUMO

Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.


Assuntos
Suscetibilidade a Doenças , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitofagia , Envelhecimento , Animais , Biomarcadores , Regulação da Expressão Gênica , Homeostase , Humanos , Estilo de Vida , Especificidade de Órgãos , Transdução de Sinais , Ubiquitina/metabolismo
6.
Front Cell Dev Biol ; 8: 555409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072744

RESUMO

Prolonging the healthy life span and limiting neurological illness are imperative goals in gerontology. Age-related neurodegeneration is progressive and leads to severe diseases affecting motility, memory, cognitive function, and social life. To date, no effective treatments are available for neurodegeneration and irreversible neuronal loss. Bioactive phytochemicals could represent a natural alternative to ensure active aging and slow onset of neurodegenerative diseases in elderly patients. Autophagy or macroautophagy is an evolutionarily conserved clearing process that is needed to remove aggregate-prone proteins and organelles in neurons and glia. It also is crucial in synaptic plasticity. Aberrant autophagy has a key role in aging and neurodegeneration. Recent evidence indicates that polyphenols like resveratrol and curcumin, flavonoids, like quercetin, polyamine, like spermidine and sugars, like trehalose, limit brain damage in vitro and in vivo. Their common mechanism of action leads to restoration of efficient autophagy by dismantling misfolded proteins and dysfunctional mitochondria. This review focuses on the role of dietary phytochemicals as modulators of autophagy to fight Alzheimer's and Parkinson's diseases, fronto-temporal dementia, amyotrophic lateral sclerosis, and psychiatric disorders. Currently, most studies have involved in vitro or preclinical animal models, and the therapeutic use of phytochemicals in patients remains limited.

7.
Front Physiol ; 11: 103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218740

RESUMO

Obesity is a worldwide epidemic disease that induces important structural and functional changes to the heart and predisposes a patient to devastating cardiac complications. Sirtuin1 (SIRT1) has been found to have roles in regulating cardiac function, but whether it can help in cardioprotection is not clear. The aim of the present study was to determine whether melatonin, by modulating SIRT1 and in turn mitochondria signaling, may alleviate obesity-induced cardiac injuries. We investigated 10 lean control mice and 10 leptin-deficient obese mice (ob/ob) orally supplemented with melatonin for 8 weeks, as well as equal numbers of age-matched lean and ob/ob mice that did not receive melatonin. Hearts were evaluated using multiple parameters, including biometric values, morphology, SIRT1 activity and expression of markers of mitochondria biogenesis, oxidative stress, and inflammation. We observed that ob/ob mice experienced significant heart hypertrophy, infiltration by inflammatory cells, reduced SIRT1 activity, altered mitochondrial signaling and oxidative balance, and overexpression of inflammatory markers. Notably, melatonin supplementation in ob/ob mice reverted these obesogenic heart alterations. Melatonin prevented heart remodeling caused by obesity through SIRT1 activation, which, together with mitochondrial pathways, reduced oxidative stress and inflammation.

8.
Cells ; 9(2)2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991655

RESUMO

Skeletal muscle disorders are dramatically increasing with human aging with enormous sanitary costs and impact on the quality of life. Preventive and therapeutic tools to limit onset and progression of muscle frailty include nutrition and physical training. Melatonin, the indole produced at nighttime in pineal and extra-pineal sites in mammalians, has recognized anti-aging, anti-inflammatory, and anti-oxidant properties. Mitochondria are the favorite target of melatonin, which maintains them efficiently, scavenging free radicals and reducing oxidative damage. Here, we discuss the most recent evidence of dietary melatonin efficacy in age-related skeletal muscle disorders in cellular, preclinical, and clinical studies. Furthermore, we analyze the emerging impact of melatonin on physical activity. Finally, we consider the newest evidence of the gut-muscle axis and the influence of exercise and probably melatonin on the microbiota. In our opinion, this review reinforces the relevance of melatonin as a safe nutraceutical that limits skeletal muscle frailty and prolongs physical performance.


Assuntos
Antioxidantes/farmacologia , Exercício Físico/fisiologia , Melatonina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Melatonina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Estresse Oxidativo/efeitos dos fármacos
9.
Cells ; 8(9)2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500354

RESUMO

Melatonin, an indole produced by pineal and extrapineal tissues, but also taken with a vegetarian diet, has strong anti-oxidant, anti-inflammatory and anti-obesogenic potentials. Non-alcoholic fatty liver disease (NAFLD) is the hepatic side of the metabolic syndrome. NAFLD is a still reversible phase but may evolve into steatohepatitis (NASH), cirrhosis and carcinoma. Currently, an effective therapy for blocking NAFLD staging is lacking. Silent information regulator 1 (SIRT1), a NAD+ dependent histone deacetylase, modulates the energetic metabolism in the liver. Micro-RNA-34a-5p, a direct inhibitor of SIRT1, is an emerging indicator of NAFLD grading. Thus, here we analyzed the effects of oral melatonin against NAFLD and underlying molecular mechanisms, focusing on steatosis, ER stress, mitochondrial shape and autophagy. Male C57BL/6J (WT) and SIRT1 heterozygous (HET) mice were placed either on a high-fat diet (58.4% energy from lard) (HFD) or on a standard maintenance diet (8.4% energy from lipids) for 16 weeks, drinking melatonin (10 mg/kg) or not. Indirect calorimetry, glucose tolerance, steatosis, inflammation, ER stress, mitochondrial changes, autophagy and microRNA-34a-5p expression were estimated. Melatonin improved hepatic metabolism and steatosis, influenced ER stress and mitochondrial shape, and promoted autophagy in WT HFD mice. Conversely, melatonin was ineffective in HET HFD mice, maintaining NASH changes. Indeed, autophagy was inconsistent in HET HFD or starved mice, as indicated by LC3II/LC3I ratio, p62/SQSTM1 and autophagosomes estimation. The beneficial role of melatonin in dietary induced NAFLD/NASH in mice was related to reduced expression of microRNA-34a-5p and sterol regulatory element-binding protein (SREBP1) but only in the presence of full SIRT1 availability.


Assuntos
Melatonina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/fisiologia , Dieta Hiperlipídica , Inflamação/metabolismo , Resistência à Insulina , Fígado/efeitos dos fármacos , Masculino , Melatonina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/fisiologia
10.
Cells ; 8(5)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052568

RESUMO

Since the pioneering discovery of heat shock proteins in Drosophila by Ferruccio Ritossa in 1960s, a long and exciting journey has been undertaken by molecular biologists and researchers worldwide. Not only lower organisms like worms, yeast, amoeba, and flies but also eukaryotes share common cellular response signals to stressful conditions that can arise from the outside but also from the inside. Moreover, extraordinary interplay between nucleus and subcellular organelles, and between different organelles, like mitochondria and the endoplasmic reticulum called mitochondria-associated endoplasmic reticulum membranes (MAMs), are involved in aging and human diseases like obesity, diabetes, inflammation, neurodegeneration, autoimmune diseases, atherosclerosis, and cancer. Actually, we know that to hit abnormal proteostasis and lipid exchanges in the endoplasmic reticulum is crucial to best guide effective therapies or discover new drugs. Indeed, restoration or impairment of endoplasmic reticulum shape and function lead to cellular homeostasis by autophagy or to final death generally by apoptosis or pyroptosis. This Special Issue collects current valuable articles or reviews on cellular stress research and each contribution opens a new window for further studies and hypothesis. I hope that readers interested in this fascinating topic may be stimulated to know more and more.


Assuntos
Chaperonas Moleculares/metabolismo , Estresse Fisiológico , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Doenças Metabólicas/metabolismo , Modelos Biológicos
11.
Cells ; 8(1)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577576

RESUMO

The interplay of mitochondria with the endoplasmic reticulum and their connections, called mitochondria-ER contacts (MERCs) or mitochondria-associated ER membranes (MAMs), are crucial hubs in cellular stress. These sites are essential for the passage of calcium ions, reactive oxygen species delivery, the sorting of lipids in whole-body metabolism. In this perspective article, we focus on microscopic evidences of the pivotal role of MERCs/MAMs and their changes in metabolic diseases, like obesity, diabetes, and neurodegeneration.


Assuntos
Retículo Endoplasmático/ultraestrutura , Microscopia/métodos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Estresse Fisiológico , Animais , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Metabolismo dos Lipídeos , Doenças Metabólicas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Obesidade/metabolismo
12.
Nutrients ; 10(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843457

RESUMO

Taurine (TAU) is a sulfur-containing beta amino acid that is not involved in protein composition and anabolism, conditionally essential in mammals provided through diet. Growing evidence supports a protective role of TAU supply in osmoregulation, calcium flux, and reduction of inflammation and oxidant damage in renal diseases like diabetes. Endoplasmic reticulum (ER) stress, due to abnormal proteostasis, is a contributor to nephrotic syndrome and related renal damage. Here, we investigated the effect of dietary TAU (1.5% in drinking water for 15 days) in an established rat model that mimics human minimal change nephrosis, consisting of a single puromycin aminonucleoside (PAN) injection (intraperitoneally 15 mg/100 g body weight), with sacrifice after eight days. TAU limited proteinuria and podocytes foot processes effacement, and balanced slit diaphragm nephrin and glomerular claudin 1 expressions. In cortical proximal tubules, TAU improved lysosomal density, ER perimeter, restored proper ER-mitochondria tethering and mitochondrial cristae, and decreased inflammation. Remarkably, TAU downregulated glomerular ER stress markers (GRP78, GRP94), pro-apoptotic C/EBP homologous protein, activated caspase 3, tubular caspase1, and mitochondrial chaperone GRP75, but maintained anti-apoptotic HSP25. In conclusion, TAU, by targeting upstream ER stress separate from mitochondria dysfunctions at crucial renal sites, might be a promising dietary supplement in the treatment of the drug-resistant nephrotic syndrome.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Puromicina Aminonucleosídeo/toxicidade , Taurina/farmacologia , Animais , Caspase 3/genética , Caspase 3/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Suplementos Nutricionais , Resistência a Medicamentos , Chaperona BiP do Retículo Endoplasmático , Marcadores Genéticos , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Rim/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Síndrome Nefrótica/tratamento farmacológico , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Proteinúria/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
13.
Autoimmunity ; 51(2): 69-80, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29480020

RESUMO

INTRODUCTION: Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus. As murine models of LN are valuable tools to better understand its pathophysiology and to search for new effective treatments, we investigated the effects of the bioflavonoid quercetin on pristane-induced LN mice through histomorphological analyses. METHODS: Immunofluorescence and biochemical assays were used to evaluate the expression of markers of inflammation (interleukin-6, IL-6; tumour necrosis factor-α, TNF-α), oxidative stress (catalase, CAT; superoxide dismutase 1, SOD1; thiobarbituric acid reactive substances, TBARS), apoptosis (Bax), and fibrosis (transforming growth factor-ß1, TGF-ß1). Glomerular and tubular ultrastructure was analysed, and tissue messenger RNA of podocin, podoplanin and α3ß1-integrin were quantified using the real-time polymerase chain reaction. RESULTS: Pristane-induced LN mice showed severe kidney injury, characterized by increased proteinuria, glomerular mesangial expansion and inflammation, high expression of the pro-fibrotic, apoptotic and prooxidant markers and reduction of antioxidants. In the kidney ultrastructure, foot process (FP) effacement, apoptotic mesangial cells and abnormal mitochondria with disrupted cristae were observed, along with suppressed tissue mRNA of podocin, podoplanin and α3ß1-integrin. Treatment with quercetin in the pristane-induced LN mice model was nephroprotective, decreasing proteinuria levels and significantly lowering tissue expression of IL-6, TNF-α, TGF-ß1, Bax and TBARS. Simultaneously, quercetin significantly increased CAT and SOD1 expressions in these mice. In addition, it was observed improvement of the kidney ultrastructure, and tissue mRNA of podocin, but not podoplanin and α3ß1-integrin, was restored to the levels found in the control mice. CONCLUSION: In conclusion, these findings provide experimental evidence of the renoprotective effects of quercetin in the pristane-induced LN mice model. We suggest that quercetin effectively ameliorates the kidney damage caused by pristane, a bioflavonoid to be further evaluated as a new therapeutic strategy in this disease.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Antioxidantes/uso terapêutico , Glomérulos Renais/patologia , Nefrite Lúpica/tratamento farmacológico , Quercetina/uso terapêutico , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Catalase/biossíntese , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Nefrite Lúpica/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/tratamento farmacológico , Superóxido Dismutase-1/biossíntese , Terpenos
14.
Life Sci ; 193: 242-251, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29097157

RESUMO

AIMS: Since lupus nephritis (LN) etiopathogenesis is not fully understood, herein we investigated the morphological basis of LN in mice induced with pristane. MAIN METHODS: To evaluate the melatonin effects in these animals, we studied the renal cytoarchitecture by means of morphological analyses, immunofluorescence expression of specific markers related to fibrosis, oxidative stress, inflammation and apoptosis. KEY FINDINGS: We observed that pristane-LN mice have serious alterations in the kidney cytoarchitecture, i.e. tubular degeneration, glomerular hypercellularity, matrix mesangial expansion and interstitial inflammation. The pristane-induced LN mice treated with melatonin exhibited a well preserved cytoarchitecture. SIGNIFICANCE: Our results document that LN etiopathogenesis is related to both tubular damage and glomerular lesions. We suggest that it is essential to take in consideration both these lesions for LN diagnosis and classification. Clearly, we show that the use of melatonin may be a possible therapeutic strategy for improvement the renal injury in this disorder.


Assuntos
Nefrite Lúpica/tratamento farmacológico , Melatonina/uso terapêutico , Animais , Apoptose , Autoanticorpos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Inflamação/patologia , Rim/lesões , Rim/metabolismo , Rim/patologia , Nefropatias/patologia , Glomérulos Renais/metabolismo , Nefrite Lúpica/metabolismo , Nefrite Lúpica/prevenção & controle , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Substâncias Protetoras , Terpenos
15.
Nutrients ; 9(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206172

RESUMO

Cardiomyocytes are particularly sensitive to oxidative damage due to the link between mitochondria and sarcoplasmic reticulum necessary for calcium flux and contraction. Melatonin, important indoleamine secreted by the pineal gland during darkness, also has important cardioprotective properties. We designed the present study to define morphological and ultrastructural changes in cardiomyocytes and mainly in mitochondria of an animal model of obesity (ob/ob mice), when treated orally or not with melatonin at 100 mg/kg/day for 8 weeks (from 5 up to 13 week of life). We observed that ob/ob mice mitochondria in sub-sarcolemmal and inter-myofibrillar compartments are often devoid of cristae with an abnormally large size, which are called mega-mitochondria. Moreover, in ob/ob mice the hypertrophic cardiomyocytes expressed high level of 4hydroxy-2-nonenal (4HNE), a marker of lipid peroxidation but scarce degree of mitofusin2, indicative of mitochondrial sufferance. Melatonin oral supplementation in ob/ob mice restores mitochondrial cristae, enhances mitofusin2 expression and minimizes 4HNE and p62/SQSTM1, an index of aberrant autophagic flux. At pericardial fat level, adipose tissue depot strictly associated with myocardium infarction, melatonin reduces adipocyte hypertrophy and inversely regulates 4HNE and adiponectin expressions. In summary, melatonin might represent a safe dietary adjuvant to hamper cardiac mitochondria remodeling and the hypoxic status that occur in pre-diabetic obese mice at 13 weeks of life.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Leptina/deficiência , Melatonina/farmacologia , Obesidade/metabolismo , Adiponectina/metabolismo , Aldeídos/metabolismo , Animais , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Deleção de Genes , Leptina/genética , Peroxidação de Lipídeos , Camundongos , Camundongos Obesos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Obesidade/genética , Proteína Sequestossoma-1/metabolismo
16.
Int J Mol Sci ; 18(7)2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661421

RESUMO

Fibromyalgia is a chronic syndrome characterized by widespread musculoskeletal pain and an extensive array of other symptoms including disordered sleep, fatigue, depression and anxiety. Important factors involved in the pathogenic process of fibromyalgia are inflammation and oxidative stress, suggesting that ant-inflammatory and/or antioxidant supplementation might be effective in the management and modulation of this syndrome. Recent evidence suggests that melatonin may be suitable for this purpose due to its well known ant-inflammatory, antioxidant and analgesic effects. Thus, in the current study, the effects of the oral supplementation of melatonin against fibromyalgia-related skeletal muscle alterations were evaluated. In detail, 90 Sprague Dawley rats were randomly treated with reserpine, to reproduce the pathogenic process of fibromyalgia and thereafter they received melatonin. The animals treated with reserpine showed moderate alterations at hind limb skeletal muscles level and had difficulty in moving, together with significant morphological and ultrastructural alterations and expression of inflammatory and oxidative stress markers in the gastrocnemius muscle. Interestingly, melatonin, dose and/or time dependently, reduced the difficulties in spontaneous motor activity and the musculoskeletal morphostructural, inflammatory, and oxidative stress alterations. This study suggests that melatonin in vivo may be an effective tool in the management of fibromyalgia-related musculoskeletal morphofunctional damage.


Assuntos
Fibromialgia/tratamento farmacológico , Melatonina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Mialgia/tratamento farmacológico , Substâncias Protetoras/farmacologia , Reserpina/farmacologia , Administração Oral , Análise de Variância , Animais , Antioxidantes/farmacologia , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Masculino , Microscopia Eletrônica de Transmissão , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculoesqueléticas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Compostos de Sulfidrila/análise
17.
Biol Trace Elem Res ; 178(1): 86-97, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28012149

RESUMO

Lead (Pb) is an environmental oncogenic metal that induces immunotoxicity and anaemia. Emerging evidence has linked Pb toxicity with endoplasmic reticulum-driven apoptosis and autophagy. Glucose-regulated protein of 78 kDa (Grp78 or binding immunoglobulin protein (BiP)), a master endoplasmic reticulum chaperone, drives macrophage activation and regulates protein folding and calcium flux in response to heavy metals. The spleen may be involved in Pb poisoning due to its crucial role in erythrocatheresis and immune response, although there are no data to support this theory. Here, we found haematic and histopathological changes in the spleen of mice exposed to medium doses of Pb acetate (200 ppm-1 mM) in drinking water for 45 days. Pb deposition was also detected in organs such as the liver, kidney, brain, bone, blood and faeces, indicating an accumulation of this metal despite relatively short exposure time. Blood Pb content (BBL) reached 21.6 µg/dL; echinocytes and poikilocytes were found in Pb smears of treated group. Inside the spleen, higher Fe(II) and Fe(III) deposits inside macrophages were observed. Grp78 immunostaining, weakly expressed in spleen cells of control mice, after Pb exposure was specifically restricted to macrophages and megakaryocytes of the marginal zone of red pulp. Furthermore, Pb exposure induced superoxide dismutase 1 (SOD1) expression, cleaved caspase-3 and p62/SQSTM1, consistent with oxidative stress, apoptosis and dysregulated autophagy in spleen compartments. We suggest that even at a middle dose, oral Pb intake induces oxidant iron deposition in the spleen and that this may trigger sustained Grp78 redistribution to cells, thus leading to oxidative and autophagy dysfunction as early local reactions to this dangerous metal.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Chumbo/toxicidade , Baço/metabolismo , Animais , Caspase 3/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Ferro/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Proteína Sequestossoma-1/metabolismo , Baço/patologia , Superóxido Dismutase-1/metabolismo
18.
Environ Toxicol ; 32(5): 1500-1512, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27726300

RESUMO

This work investigated the effects of mercury chloride (HgCl2 ) acute exposure on virgin, pregnant and lactating rats by determination of renal and hepatic morphological and ultrastructural parameters and the expression of oxidative stress and stress tolerance markers, due to kidney and liver are the organs that more accumulate inorganic mercury. Adult Wistar rats virgin (90 days old), pregnant (18th gestation day) and lactating (7th lactation day) were injected once with HgCl2 (5 mg/kg) or saline (controls). We observed that HgCl2 exposure of virgin rats caused significant inflammatory infiltration and severe morphological variations, like glomeruli atrophy, dilatation of Bowman's capsule, tubular degeneration and hepatocytes alteration. Moreover, virgin rats presented mitochondrial modification, important oxidative stress and increase in stress tolerance proteins at both kidney and liver level, compared with virgin controls. In detail, virgin rats exposed to HgCl2 presented significantly elevated level of inducible nitric oxide synthase, heat shock protein 27 and glucose regulated proteins 75 expressions at both renal tubular and hepatocytes level, respect untreated virgin rats. Interestingly, pregnant and lactating rats exposed to HgCl2 presented weak renal and liver morphological alterations, showing weak inflammatory infiltration and no significant difference in structural mitochondrial transmembrane protein, oxidative stress markers and stress tolerance proteins expressions respect controls (virgin, pregnant and lactating rats). Although, both control and HgCl2 -exposed pregnant and lactating rats showed renal glomeruli greater in diameter respect virgin rats. In conclusion, we believe that virgin rats are more sensitive to HgCl2 toxicity respect pregnant and lactating rats. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1500-1512, 2017.


Assuntos
Rim/efeitos dos fármacos , Lactação/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mercúrio/toxicidade , Gravidez/efeitos dos fármacos , Doença Aguda , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Feminino , Rim/patologia , Fígado/patologia , Cloreto de Mercúrio/toxicidade , Intoxicação por Mercúrio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Testes de Toxicidade Aguda
19.
PLoS One ; 11(1): e0148115, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824477

RESUMO

BACKGROUND: Obesity is a common risk factor for non-alcoholic fatty liver disease (NAFLD). Currently, there are no specific treatments against NAFLD. Thus, examining any molecule with potential benefits against this condition emerged melatonin as a molecule that influences metabolic dysfunctions. The aim of this study was to determine whether melatonin would function against NAFDL, studying morphological, ultrastuctural and metabolic markers that characterize the liver of ob/ob mice. METHODS: Lean and ob/ob mice were supplemented with melatonin in the drinking water for 8 weeks. Histology and stereology were performed to assess hepatic steatosis and glycogen deposition. Ultrastructural features of mitochondria, endoplasmic reticulum (ER) and their juxtapositions were evaluated in livers of all experimental groups. Furthermore, hepatic distribution and expression of markers of ER and mitochondria (calnexin, ATP sintase ß, GRP78 and CHOP) and metabolic dysfunction (RPB4, ß-catenin) and cellular longevity (SIRT1) were analyzed. RESULTS: Melatonin significantly reduced glycemia, identified also by a decrease of hepatic RBP4 expression, reversed macrosteatosis in microsteatosis at the hepatic pericentral zone, enlarged ER-mitochondrial distance and ameliorated the morphology and organization of these organelles in ob/ob mouse liver. Furthermore, in ob/ob mice, calnexin and ATP synthase ß were partially restored, GRP78 and CHOP decreased in periportal and midzonal hepatocytes and ß-catenin expression was, in part, restored in peripheral membranes of hepatocytes. Melatonin supplementation to ob/ob mice improves hepatic morphological, ultrastructural and metabolic damage that occurs as a result of NAFLD. CONCLUSIONS: Melatonin may be a potential adjuvant treatment to limit NAFLD and its progression into irreversible complications.


Assuntos
Antioxidantes/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Melatonina/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Calnexina/genética , Calnexina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Obesos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
Nutr Res ; 35(10): 891-900, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26250620

RESUMO

The increasing incidence of obesity, leading to metabolic complications, is now recognized as a major public health problem. The adipocytes are not merely energy-storing cells, but they play crucial roles in the development of the so-called metabolic syndrome due to the adipocyte-derived bioactive factors such as adipokines, cytokines, and growth factors. The dysregulated production and secretion of adipokines seen in obesity is linked to the pathogenesis of the metabolic disease processes. In this study, we hypothesized that dietary melatonin administration would support an anti-inflammatory response and play an important role in energy metabolism in subcutaneous and visceral adipose tissues of obese mice and so may counteract some of the disruptive effects of obesity. Lean and obese mice (ob/ob) received melatonin or vehicle in drinking water for 8 weeks. Thereafter, they were evaluated for morphologic alteration, inflammatory cell infiltration, and the adipokine patterns in visceral and subcutaneous white fat depots. In obese mice treated with vehicle, we observed a significant increase in fat depots, inflammation, and a dysregulation of the adipokine network. In particular, we measured a significant reduction of adiponectin and an increase of tumor necrosis factor α, resistin, and visfatin in adipose tissue deposits. These changes were partially reversed when melatonin was supplemented to obese mice. Melatonin supplementation by regulating inflammatory infiltration ameliorates obesity-induced adipokine alteration, whereas melatonin administration in lean mice was unaffected. Thus, it is likely that melatonin would be provided in supplement form to control some of the disruptive effects on the basis of obesity pathogenic process.


Assuntos
Adipocinas/análise , Tecido Adiposo/química , Melatonina/administração & dosagem , Obesidade/prevenção & controle , Animais , Dieta , Suplementos Nutricionais , Imunofluorescência , Inflamação/prevenção & controle , Gordura Intra-Abdominal/química , Camundongos , Camundongos Obesos , Microscopia Eletrônica de Transmissão , Nicotinamida Fosforribosiltransferase/análise , Resistina/análise , Gordura Subcutânea/química , Fator de Necrose Tumoral alfa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...