Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 29(9): 1781-1790, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29633220

RESUMO

The present work explores the structures of species formed by dehydrogenation of methane (CH4) and perdeuterated methane (CD4) by the 5d transition metal cation osmium (Os+). Using infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT), the structures of the [Os,C,2H]+ and [Os,C,2D]+ products are explored. This study complements previous work on the related species formed by dehydrogenation of methane by four other 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Osmium cations are formed in a laser ablation source, react with methane pulsed into a reaction channel downstream, and the resulting products spectroscopically characterized through photofragmentation using the Free-Electron Laser for IntraCavity Experiments (FELICE) in the 300-1800 cm-1 range. Photofragmentation was monitored by the loss of H2/D2. Comparison of the experimental spectra and DFT calculated spectra leads to identification of the ground state carbyne hydride, HOsCH+ (2A') as the species formed, as previously postulated theoretically. Further, a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy, is achieved. A full rotational contour analysis explains the observed linewidths as well as the observation of doublet structures in several bands, consistent with previous observations for HIrCH+ (2A'). Graphical Abstract ᅟ.

2.
Nano Lett ; 16(4): 2283-8, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26990711

RESUMO

We study the growth of GaN nanowires from liquid Au-Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either ⟨112̅0⟩ or ⟨11̅00⟩ directions, by the addition of {11̅00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. The results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III-V semiconductor nanowires.

3.
Nano Lett ; 15(12): 8211-6, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26539668

RESUMO

In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires.

4.
Nat Mater ; 14(8): 820-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26168344

RESUMO

Nanowire growth by the vapour-liquid-solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a 'mixing bowl', in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.

5.
Nat Commun ; 6: 7583, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26119246

RESUMO

Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction-ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. This method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.

6.
Nano Lett ; 14(9): 4997-5003, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25079258

RESUMO

We demonstrate that argon ion bombardment of single crystal sapphire leads to the creation of substrates that support the growth of vertically aligned carbon nanotubes from iron catalysts with a density, height, and quality equivalent to those grown on conventional, disordered alumina supports. We quantify the evolution of the catalyst using a range of surface characterization techniques and demonstrate the ability to engineer and pattern the catalyst support through control of ion beam bombardment parameters.

7.
Nano Lett ; 14(8): 4554-9, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25040757

RESUMO

The motion of Au between AuSi liquid eutectic droplets, both before and during vapor-liquid-solid growth, is important in controlling tapering and diameter uniformity in Si nanowires. We measure the kinetics of coarsening of AuSi droplets on Si(001) and Si(111), quantifying the size evolution of droplets during annealing in ultrahigh vacuum using in situ transmission electron microscopy. For individual droplets, we show that coarsening kinetics are modified when disilane or oxygen is added: coarsening rates increase in the presence of disilane but decrease in oxygen. Matching droplet size measurements on Si(001) with coarsening models confirms that Au transport is driven by capillary forces and that the kinetic coefficients depend on the gas environment present. We suggest that the gas effects are qualitatively similar whether transport is attachment limited or diffusion limited. These results provide insight into manipulating nanowire morphologies for advanced device fabrication.


Assuntos
Ouro/química , Nanofios/química , Silício/química , Catálise , Nanofios/ultraestrutura
8.
Nanoscale ; 6(12): 6984-90, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24837497

RESUMO

We report in situ transmission electron microscopy studies of the formation of ZnO nanostructures--nanoscale depressions, nanoholes, nanoribbons, and nanosheets--and the phase stability and kinetics of Au catalysts on ZnO. During annealing, the ZnO layer produces hexagonally shaped, vertical nanoscale depressions, which increase in size along the 〈 0001 〉 growth direction through preferential dissociation from the {101[combining macron]0} facet and which subsequently form hexagonal islands at their six-fold junctions. Real time observations of the annealing of Au deposited on ZnO show that the catalysts remain solid up to 900 °C, an observation that has implications regarding ZnO nanowire growth via the vapor-solid-solid mechanism (VSS). The Au also creates hexagonal nanoscale holes only at the location of solid Au catalysts, via the solid-solid-vapor (SSV) mechanism. Importantly, coarsening of the Au particles is negligible due to limited Au diffusion on the side facets of the nanoscale depressions, suggesting an approach to the growth of uniform hybrid nanowires with control over both diameter and location. Furthermore, we directly monitor the evolution of the transformation of a nanoribbon into a nanosheet with {101[combining macron]0} facets. This process takes place through a periodic, kinetic roughening transition of the surface, which is controlled by the kinetic competition between surface growth and the transfer of evaporated gases. In total, these observations give new insights into multiple growth processes occurring in this important materials system.

9.
Nano Lett ; 13(6): 2964-70, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23721080

RESUMO

Using in situ liquid cell electron microscopy we investigate Pd growth in dilute aqueous Pd salt solutions containing Au nanoparticle seeds. Au-Pd core-shell nanostructures are formed via deposition of Pd(0), generated by the reduction of chloropalladate complexes by radicals, such as hydrated electrons (eaq(-)) induced by the electron beam in the solution. The size and shape of the Au seeds determine the morphology of the Pd shells, via preferential Pd incorporation in low-coordination sites and avoidance of extended facets. Analysis of the Pd incorporation on Au particles at different distances from a focused electron beam provides a quantitative picture of the growth process and shows that the growth is limited by the diffusion of eaq(-) in the solution.

10.
Nano Lett ; 12(11): 5867-72, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23121486

RESUMO

Device integration on flexible or low-cost substrates has driven interest in the low-temperature growth of semiconductor nanostructures. Using in situ electron microscopy, we examine the Au-catalyzed growth of crystalline Ge at temperatures as low as 150 °C. For this materials system, the model for low temperature growth of nanowires, we find three distinct reaction pathways. The lowest temperature reactions are distinguished by the absence of any purely liquid state. From measurements of reaction rates and parameters such as supersaturation, we explain the sequence of pathways as arising from a kinetic competition between the imposed time scale for Ge addition and the inherent time scale for Ge nucleation. This enables an understanding of the conditions under which catalytic Ge growth can occur at very low temperatures, with implications for nanostructure formation on temperature-sensitive substrates.

11.
Phys Rev Lett ; 107(14): 146101, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107214

RESUMO

We examine the congruent vaporization of ZnO islands using in situ transmission electron microscopy. Correlating quantitative measurements with a theoretical model offers a comprehensive understanding of the equilibrium conditions of the system, including equilibrium vapor pressure and surface free energy. Interestingly, the surface energy depends on temperature, presumably due to a charged surface at our specific condition of low P and high T. We find that the vaporization temperature decreases with decreasing system size, a trend that is more pronounced at higher T. Applying our results of island decay towards the growth of the ZnO provides new insights into the cooperative facet growth of anisotropic nanocrystals.

12.
Phys Rev Lett ; 107(2): 025503, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797618

RESUMO

Nanowire growth in the standard <111> direction is assumed to occur at a planar catalyst-nanowire interface, but recent reports contradict this picture. Here we show that a nonplanar growth interface is, in fact, a general phenomenon. Both III-V and group IV nanowires show a distinct region at the trijunction with a different orientation whose size oscillates during growth, synchronized with step flow. We develop an explicit model for this structure that agrees well with experiment and shows that the oscillations provide a direct visualization of catalyst supersaturation. We discuss the implications for wire growth and structure.

13.
Nano Lett ; 10(2): 514-9, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20041666

RESUMO

We use real-time observations of the growth of copper-catalyzed silicon nanowires to determine the nanowire growth mechanism directly and to quantify the growth kinetics of individual wires. Nanowires were grown in a transmission electron microscope using chemical vapor deposition on a copper-coated Si substrate. We show that the initial reaction is the formation of a silicide, eta'-Cu(3)Si, and that this solid silicide remains on the wire tips during growth so that growth is by the vapor-solid-solid mechanism. Individual wire directions and growth rates are related to the details of orientation relation and catalyst shape, leading to a rich morphology compared to vapor-liquid-solid grown nanowires. Furthermore, growth occurs by ledge propagation at the silicide/silicon interface, and the ledge propagation kinetics suggest that the solubility of precursor atoms in the catalyst is small, which is relevant to the fabrication of abrupt heterojunctions in nanowires.


Assuntos
Cobre/química , Nanopartículas/química , Nanotecnologia/métodos , Nanofios/química , Silício/química , Catálise , Cinética , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Pressão , Temperatura
14.
Phys Rev Lett ; 105(19): 195502, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21231182

RESUMO

Nanowire growth occurs by step flow at the wire-catalyst interface, with strikingly different step-flow kinetics for solid versus liquid catalysts. Here we report quantitative in situ measurements of step flow together with a kinetic model that reproduces the behavior. This allows us to identify the key parameters controlling step-flow growth, evaluate changes in the catalyst composition during growth, and identify the most favorable conditions for growing abrupt heterojunctions in nanowires.

15.
Science ; 326(5957): 1247-50, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19965471

RESUMO

We have formed compositionally abrupt interfaces in silicon-germanium (Si-Ge) and Si-SiGe heterostructure nanowires by using solid aluminum-gold alloy catalyst particles rather than the conventional liquid semiconductor-metal eutectic droplets. We demonstrated single interfaces that are defect-free and close to atomically abrupt, as well as quantum dots (i.e., Ge layers tens of atomic planes thick) embedded within Si wires. Real-time imaging of growth kinetics reveals that a low solubility of Si and Ge in the solid particle accounts for the interfacial abruptness. Solid catalysts that can form functional group IV nanowire-based structures may yield an extended range of electronic applications.

16.
Phys Rev Lett ; 103(15): 155701, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19905650

RESUMO

The phase diagram of a nanoscale system can be substantially different than in the bulk, but quantitative measurements have proven elusive. Here we use in situ microscopy to observe a phase transition in a nanoscale system, together with a simple quantitative model to extract the size effects from these measurements. We expose a Au particle to disilane gas, and observe the transition from a two-phase Au + AuSi system to single-phase AuSi. Size effects are evident in the nonlinear disappearance of the solid Au. Our analysis shows a substantial shift in the liquidus line, and a discontinuous change in the liquid composition at the transition. It also lets us estimate the liquid-solid interfacial free energy.

17.
J Nanopart Res ; 11(8): 2031-2041, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21804765

RESUMO

In the present study, we have exploited the properties of a fibrillar protein for the template synthesis of zinc sulfide (ZnS) nanoparticle chains. The diameter of the ZnS nanoparticle chains was tuned in range of ~30 to ~165 nm by varying the process variables. The nanoparticle chains were characterized by field emission scanning electron microscopy, UV-Visible spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The effect of incubation temperature on the morphology of the nanoparticle chains was also studied.

18.
Science ; 322(5904): 1070-3, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19008438

RESUMO

We measured the nucleation and growth kinetics of solid silicon (Si) from liquid gold-silicon (AuSi) catalyst particles as the Si supersaturation increased, which is the first step of the vapor-liquid-solid growth of nanowires. Quantitative measurements agree well with a kinetic model, providing a unified picture of the growth process. Nucleation is heterogeneous, occurring consistently at the edge of the AuSi droplet, yet it is intrinsic and highly reproducible. We studied the critical supersaturation required for nucleation and found no observable size effects, even for systems down to 12 nanometers in diameter. For applications in nanoscale technology, the reproducibility is essential, heterogeneity promises greater control of nucleation, and the absence of strong size effects simplifies process design.

19.
Microsc Microanal ; 14(5): 469-77, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18793491

RESUMO

The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Sigma3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.

20.
Phys Rev Lett ; 100(10): 105502, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18352202

RESUMO

In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...