Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Oncol Res ; 29: 1610914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151356

RESUMO

Tisagenlecleucel (tisa-cel) is a CD19-specific CAR-T cell product approved for the treatment of relapsed/refractory (r/r) DLBCL or B-ALL. We have followed a group of patients diagnosed with childhood B-ALL (n = 5), adult B-ALL (n = 2), and DLBCL (n = 25) who were treated with tisa-cel under non-clinical trial conditions. The goal was to determine how the intensive pretreatment of patients affects the produced CAR-T cells, their in vivo expansion, and the outcome of the therapy. Multiparametric flow cytometry was used to analyze the material used for manufacturing CAR-T cells (apheresis), the CAR-T cell product itself, and blood samples obtained at three timepoints after administration. We present the analysis of memory phenotype of CD4/CD8 CAR-T lymphocytes (CD45RA, CD62L, CD27, CD28) and the expression of inhibitory receptors (PD-1, TIGIT). In addition, we show its relation to the patients' clinical characteristics, such as tumor burden and sensitivity to prior therapies. Patients who responded to therapy had a higher percentage of CD8+CD45RA+CD27+ T cells in the apheresis, although not in the produced CAR-Ts. Patients with primary refractory aggressive B-cell lymphomas had the poorest outcomes which was characterized by undetectable CAR-T cell expansion in vivo. No clear correlation of the outcome with the immunophenotypes of CAR-Ts was observed. Our results suggest that an important parameter predicting therapy efficacy is CAR-Ts' level of expansion in vivo but not the immunophenotype. After CAR-T cells' administration, measurements at several timepoints accurately detect their proliferation intensity in vivo. The outcome of CAR-T cell therapy largely depends on biological characteristics of the tumors rather than on the immunophenotype of produced CAR-Ts.


Assuntos
Linfoma de Células B , Linfoma Difuso de Grandes Células B , Humanos , Citometria de Fluxo , Receptores de Antígenos de Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos/metabolismo , Linfoma Difuso de Grandes Células B/patologia
2.
Mol Ther Methods Clin Dev ; 23: 119-127, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34631931

RESUMO

The piggyBac transposon system provides a non-viral alternative for cost-efficient and simple chimeric antigen receptor (CAR) T cell production. The generation of clinical-grade CAR T cells requires strict adherence to current good manufacturing practice (cGMP) standards. Unfortunately, the high costs of commonly used lentiviral or retroviral vectors limit the manufacturing of clinical-grade CAR T cells in many non-commercial academic institutions. Here, we present a manufacturing platform for highly efficient generation of CD19-specific CAR T cells (CAR19 T cells) based on co-electroporation of linear DNA transposon and mRNA encoding the piggyBac transposase. The transposon is prepared enzymatically in vitro by PCR and contains the CAR transgene flanked by piggyBac 3' and 5' arms. The mRNA is similarly prepared via in vitro transcription. CAR19 T cells are expanded in the combination of cytokines interleukin (IL)-4, IL-7, and IL-21 to prevent terminal differentiation of CAR T cells. The accurate control of vector copy number (VCN) is achieved by decreasing the concentration of the transposon DNA, and the procedure yields up to 1 × 108 CAR19 T cells per one electroporation of 1 × 107 peripheral blood mononuclear cells (PBMCs) after 21 days of in vitro culture. Produced cells contain >60% CAR+ cells with VCN < 3. In summary, the described manufacturing platform enables a straightforward cGMP certification, since the transposon and transposase are produced abiotically in vitro via enzymatic synthesis. It is suitable for the cost-effective production of highly experimental, early-phase CAR T cell products.

3.
Cytotherapy ; 22(12): 744-754, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950390

RESUMO

BACKGROUND: The efficiency of chimeric antigen receptor (CAR) T-cell-based therapies depends on a sufficient expansion of CAR T cells in vivo and can be weakened by intra-tumoral suppression of CAR T cell functions, leading to a failure of therapy. For example, certain B-cell malignancies such as chronic lymphocytic leukemia are weakly sensitive to treatment with CAR T cells. Co-expression of proinflamatory cytokines such as IL-12 and IL-18 by CAR T cells have been shown to enhance their antitumor function. We similarly engineered CAR T cell to co-express IL-21 and studied the effects of IL-21 on CAR T cells specific to CD19 and prostate-specific membrane antigens using an in vitro co-culture model and NSG mice transplanted with B-cell tumors. RESULTS: IL-21 enhanced the expansion of CAR T cells after antigenic stimulation, reduced the level of apoptosis of CAR T cells during co-culture with tumor cells and prevented differentiation of CAR T cells toward late memory phenotypes. In addition, induced secretion of IL-21 by CAR T cells promoted tumor infiltration by CD19-specific CAR (CAR19) T cells in NSG mice, resulting in reduced tumor growth. By co-culturing CAR19 T cells with bone-marrow fragments infiltrated with CLL cells we demonstrate that IL-21 reduces the immunosupressive activity of CLL cells against CAR19 T cells. CONCLUSIONS: CAR19 T cells armed with IL-21 exhibited enhanced antitumor functions. IL-21 promoted their proliferation and cytotoxicity against chronic lymphocytic leukemia (CLL). The results suggest that arming CAR T cells with IL-21 could boost the effectiveness of CAR T-mediated therapies.


Assuntos
Elementos de DNA Transponíveis/genética , Interleucinas/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Proliferação de Células , Humanos , Terapia de Imunossupressão , Camundongos , Fenótipo
4.
Cytotherapy ; 20(4): 507-520, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475789

RESUMO

BACKGROUND AIMS: Clinical-grade chimeric antigenic receptor (CAR)19 T cells are routinely manufactured by lentiviral/retroviral (LV/RV) transduction of an anti-CD3/CD28 activated T cells, which are then propagated in a culture medium supplemented with interleukin (IL)-2. The use of LV/RVs for T-cell modification represents a manufacturing challenge due to the complexity of the transduction approach and the necessity of thorough quality control. METHODS: We present here a significantly improved protocol for CAR19 T-cell manufacture that is based on the electroporation of peripheral blood mononuclear cells with plasmid DNA encoding the piggyBac transposon/transposase vectors and their cultivation in the presence of cytokines IL-4, IL-7 and IL-21. RESULTS: We found that activation of the CAR receptor by either its cognate ligand (i.e., CD19 expressed on the surface of B cells) or anti-CAR antibody, followed by cultivation in the presence of cytokines IL-4 and IL-7, enables strong and highly selective expansion of functional CAR19 T cells, resulting in >90% CAR+ T cells. Addition of cytokine IL-21 to the mixture of IL-4 and IL-7 supported development of immature CAR19 T cells with central memory and stem cell memory phenotypes and expressing very low amounts of inhibitory receptors PD-1, LAG-3 and TIM-3. CONCLUSIONS: Our protocol provides a simple and cost-effective method for engineering high-quality T cells for adoptive therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Elementos de DNA Transponíveis/genética , Interleucina-4/farmacologia , Interleucina-7/farmacologia , Interleucinas/farmacologia , Engenharia de Proteínas/métodos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Células Cultivadas , Eletroporação , Vetores Genéticos , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Lentivirus/genética , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Células PC-3 , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução Genética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...