Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(42): 24273-24281, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34671783

RESUMO

Rare earth elements are helping drive the global transition towards a greener economy. However, the way in which they are produced is far from being considered green. One of the major obstacles to developing greener production methods and the design of novel processes and materials involving rare earth elements is the limited thermodynamic data available. In the present work, we apply a suite of methods to estimate the enthalpy of formation of several rare earth compounds, including a new method based on a linear relationship, established by the authors. Experimental values of the enthalpy of formation of LnCl3, LnOCl, LnPO4, Ln2O2S, Ln2O2CO3 and NaLnO2 were collated and used to assess the accuracy of the different methods, which were then used to predict values for compounds for which no data exists. It is shown that Mostafa et al.'s group contribution method and the linear relationship proposed by the authors give the lowest mean absolute error (<9%). The volume based thermodynamics (VBT) method yields estimates with absolute mean errors below 16.0% for LnPO4 and Ln2O2S, but above 26.0% for other compounds. Correction of the VBT method using an improved estimate of the Madelung energy for the calculation of the lattice enthalpy decreases the absolute mean error below 12.0% for all compounds except LnPO4. These complementary methods provide options for calculating the enthalpy of formation of rare earth compounds, depending on the experimental data available and desired accuracy.

2.
Chemistry ; 25(37): 8725-8740, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31017723

RESUMO

A better understanding of the solution chemistry of the lanthanide (Ln) salts in water would have wide ranging implications in materials processing, waste management, element tracing, medicine and many more fields. This is particularly true for minerals processing, given governmental concerns about lanthanide security of supply and the drive to identify environmentally sustainable processing routes. Despite much effort, even in simple systems, the mechanisms and thermodynamics of LnIII association with small anions remain unclear. In the present study, molecular dynamics (MD), using a newly developed force field, provide new insights into LnCl3 (aq) solutions. The force field accurately reproduces the structure and dynamics of Nd3+ , Gd3+ and Er3+ in water when compared to calculations using density functional theory (DFT). Adaptive-bias MD simulations show that the mechanisms for ion pairing change from dissociative to associative exchange depending upon cation size. Thermodynamics of association reveal that whereas ion pairing is favourable, the equilibrium distribution of species at low concentration is dominated by weakly bound solvent-shared and solvent-separated ion pairs, rather than contact ion pairs, reconciling a number of contrasting observations of LnIII -Cl association in the literature. In addition, we show that the thermodynamic stabilities of a range of inner sphere and outer sphere LnCl x ( 3 - x ) + coordination complexes are comparable and that the kinetics of anion binding to cations may control solution speciation distributions beyond ion pairs. The techniques adopted in this work provide a framework with which to investigate more complex solution chemistries of cations in water.

3.
Phys Rev Lett ; 104(20): 208501, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20867074

RESUMO

We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative of the Earth's core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative a=(∂ln k/∂ln ρ)(T)=4.6±1.2 and that k=20±5 Wm(-1) K(-1) at the core-mantle boundary, while also finding good agreement with extant experimental data at much lower pressures.

4.
Nature ; 438(7070): 1004-7, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16355222

RESUMO

Constraining the chemical, rheological and electromagnetic properties of the lowermost mantle (D'') is important to understand the formation and dynamics of the Earth's mantle and core. To explain the origin of the variety of characteristics of this layer observed with seismology, a number of theories have been proposed, including core-mantle interaction, the presence of remnants of subducted material and that D'' is the site of a mineral phase transformation. This final possibility has been rejuvenated by recent evidence for a phase change in MgSiO3 perovskite (thought to be the most prevalent phase in the lower mantle) at near core-mantle boundary temperature and pressure conditions. Here we explore the efficacy of this 'post-perovskite' phase to explain the seismic properties of the lowermost mantle through coupled ab initio and seismic modelling of perovskite and post-perovskite polymorphs of MgSiO3, performed at lowermost-mantle temperatures and pressures. We show that a post-perovskite model can explain the topography and location of the D'' discontinuity, apparent differences in compressional- and shear-wave models and the observation of a deeper, weaker discontinuity. Furthermore, our calculations show that the regional variations in lower-mantle shear-wave anisotropy are consistent with the proposed phase change in MgSiO3 perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...