Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 15(3): 036003, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829988

RESUMO

Particulate air pollution has an adverse effect on cardiovascular and respiratory health. Air filtration systems are therefore essential in closed indoor environments. While mechanical filtration is described as an efficient technology, particle filters may act as a source of pollution if not correctly installed and frequently maintained. The sandfish lizard, a sand swimmer that spends nearly its whole life in fine desert sand, inspired us to rethink traditional filtering systems due to its unique ability of filtering sand from its nasal cavity. During a slow, prolonged inhalation, strong cross-flow velocities develop in a certain region of the upper respiratory tract; these cross-flows enhance gravitational settling and force inhaled sand grains towards the wall where they adhere to mucus, which covers the walls in this region. During an intense, cough-like exhalation the particles are blasted out. In this work, the sandfish's aerodynamic filtering system was analyzed experimentally and by computational fluid dynamics simulations to study the flow profile and particle trajectories. Based on these findings, we discuss the development of a biomimetic filtering system, which could have the following advantages: due to the absence of a membrane, total pressure losses can be reduced. The mucus-covered surface would be mimicked by a specifically treated surface to trap particulate matter. Also, the device would contain a self-cleaning mechanism that simulates the lizard's exhalation. This biomimetic filtering system would therefore have an enhanced life-time and it would be low-maintenance and therefore economical and sustainable.


Assuntos
Desenho de Equipamento/métodos , Filtração/instrumentação , Lagartos/fisiologia , Filtros de Ar , Animais , Materiais Biomiméticos , Simulação por Computador , Hidrodinâmica , Tamanho da Partícula , Material Particulado
2.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813266

RESUMO

Accurate flow measurement is a ubiquitous task in fields such as industry, medical technology, or chemistry; it remains however challenging due to small measurement ranges or erosive flows. Inspiration for possible measurement methods can come from nature, for example from the lateral line organ of fish, which is comprised of hair cells embedded in a gelatinous cupula. When the cupula is deflected by water movement, the hair cells generate neural signals from which the fish gains an accurate representation of its environment. We built a flow sensor mimicking a hair cell, but coupled it with an optical detection method. Light is coupled into a PDMS waveguide that consists of a core and a cladding with a low refractive index contrast to ensure high bending sensitivity. Fluid flow bends the waveguide; this leads to a measurable light loss. The design of our sensory system allows flow measurement in opaque and corrosive fluids while keeping production costs low. To prove the measurement concept, we evaluated the light loss while (a) reproducibly bending the fiber with masses, and (b) exposing the fiber to air flow. The results demonstrate the applicability of an optical fiber as a flow sensor.

3.
J Exp Biol ; 219(Pt 22): 3597-3604, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852763

RESUMO

The sandfish lizard, Scincus scincus (Squamata: Scincidae), spends nearly its whole life in aeolian sand and only comes to the surface for foraging, defecating and mating. It is not yet understood how the animal can respire without sand particles entering its respiratory organs when buried under thick layers of sand. In this work, we integrated biological studies, computational calculations and physical experiments to understand this phenomenon. We present a 3D model of the upper respiratory system based on a detailed histological analysis. A 3D-printed version of this model was used in combination with characteristic ventilation patterns for computational calculations and fluid mechanics experiments. By calculating the velocity field, we identified a sharp decrease in velocity in the anterior part of the nasal cavity where mucus and cilia are present. The experiments with the 3D-printed model validate the calculations: particles, if present, were found only in the same area as suggested by the calculations. We postulate that the sandfish has an aerodynamic filtering system; more specifically, that the characteristic morphology of the respiratory channel coupled with specific ventilation patterns prevent particles from entering the lungs.


Assuntos
Adaptação Fisiológica , Lagartos/fisiologia , Pulmão/fisiologia , Solo , Animais , Clima Desértico , Expiração/fisiologia , Hidrodinâmica , Imageamento Tridimensional , Inalação/fisiologia , Pulmão/anatomia & histologia , Modelos Anatômicos , Volume de Ventilação Pulmonar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...