Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eukaryot Cell ; 6(4): 592-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17337637

RESUMO

To learn about the cellular processes involved in Mg(2+) homeostasis and the mechanisms allowing cells to cope with low Mg(2+) availability, we performed RNA expression-profiling experiments and followed changes in gene activity upon Mg(2+) depletion on a genome-wide scale. A striking portion of genes up-regulated under Mg(2+) depletion are also induced by high Ca(2+) and/or alkalinization. Among the genes significantly up-regulated by Mg(2+) starvation, Ca(2+) stress, and alkalinization are ENA1 (encoding a P-type ATPase sodium pump) and PHO89 (encoding a sodium/phosphate cotransporter). We show that up-regulation of these genes is dependent on the calcineurin/Crz1p (calcineurin-responsive zinc finger protein) signaling pathway. Similarly to Ca(2+) stress, Mg(2+) starvation induces translocation of the transcription factor Crz1p from the cytoplasm into the nucleus. The up-regulation of ENA1 and PHO89 upon Mg(2+) starvation depends on extracellular Ca(2+). Using fluorescence resonance energy transfer microscopy, we demonstrate that removal of Mg(2+) results in an immediate increase in free cytoplasmic Ca(2+). This effect is dependent on external Ca(2+). The results presented indicate that Mg(2+) depletion in yeast cells leads to enhanced cellular Ca(2+) concentrations, which activate the Crz1p/calcineurin pathway. We provide evidence that calcineurin/Crz1p signaling is crucial for yeast cells to cope with Mg(2+) depletion stress.


Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Magnésio/metabolismo , Saccharomyces cerevisiae/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Privação de Alimentos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico/efeitos dos fármacos , Magnésio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos
2.
FEBS J ; 273(18): 4236-49, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16903865

RESUMO

Alr1p is an integral plasma membrane protein essential for uptake of Mg(2+) into yeast cells. Homologs of Alr1p are restricted to fungi and some protozoa. Alr1-type proteins are distant relatives of the mitochondrial and bacterial Mg(2+)-transport proteins, Mrs2p and CorA, respectively, with which they have two adjacent TM domains and a short Mg(2+) signature motif in common. The yeast genome encodes a close homolog of Alr1p, named Alr2p. Both proteins are shown here to be present in the plasma membrane. Alr2p contributes poorly to Mg(2+) uptake. Substitution of a single arginine with a glutamic acid residue in the loop connecting the two TM domains at the cell surface greatly improves its function. Both proteins are shown to form homo-oligomers as well as hetero-oligomers. Wild-type Alr2p and mutant Alr1 proteins can have dominant-negative effects on wild-type Alr1p activity, presumably through oligomerization of low-function with full-function proteins. Chemical cross-linking indicates the presence of Alr1 oligomers, and split-ubiquitin assays reveal Alr1p-Alr1p, Alr2p-Alr2p, and Alr1p-Alr2p interactions. These assays also show that both the N-terminus and C-terminus of Alr1p and Alr2p are exposed to the inner side of the plasma membrane.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/química , Magnésio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte de Cátions/química , Proteínas de Membrana , Dados de Sequência Molecular , Mutagênese , Reação em Cadeia da Polimerase , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/metabolismo
3.
Dev Dyn ; 233(3): 883-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15895391

RESUMO

Histone acetylation is an important epigenetic mechanism for the control of eukaryotic transcription. The histone deacetylase 1 (HDAC1) gene has been implicated in controlling the transcription of core cell cycle regulators, but the in vivo role of HDACs in cell cycle regulation is still poorly understood. Loss of HDAC1 activity causes underproliferation in several contexts during vertebrate development. In contrast, we show here that HDAC1 has the opposite effect in the zebrafish visual system, where loss of HDAC1 activity leads to failure of cells to exit the cell cycle in the retina and in the optic stalk. The effect of HDAC1 on cell cycle exit is cell-autonomous, and loss of HDAC1 in the retina leads to up-regulation of cyclin D and E transcripts. These results demonstrate that the in vivo role of HDAC1 in regulating cell cycle progression is region-specific, as HDAC1 promotes cell cycle exit in the retina but stimulates proliferation in other cellular contexts.


Assuntos
Ciclo Celular , Diferenciação Celular , Histona Desacetilases/metabolismo , Retina/citologia , Retina/enzimologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Alelos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilase 1 , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Retina/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
4.
Dev Neurosci ; 26(5-6): 346-51, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15855763

RESUMO

The vertebrate visual system is a region of the nervous system that is characterized by relative simplicity, and its development has hence been studied intensively, to serve as a paradigm for the rest of the central nervous system. The zebrafish model organism offers an impressive array of tools to dissect this process experimentally, and in recent years has helped to significantly deepen our understanding of the development of the visual system. A number of these studies have focused on the role of the Hedgehog family of secreted signaling molecules in eye development, and this is the main topic of this review. Hedgehog signaling plays an important role in all major steps of visual system development, starting with the regionalization of the eye primordium into proximal and distal territories, continuing with the control of cellular differentiation in the retina, and ending with the guidance of axonal projections from the retina to the optic centers of the brain.


Assuntos
Encéfalo/embriologia , Retina/embriologia , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Vias Visuais/embriologia , Peixe-Zebra/embriologia , Animais , Encéfalo/fisiologia , Comunicação Celular , Diferenciação Celular/fisiologia , Proteínas Hedgehog , Modelos Animais , Retina/fisiologia , Transativadores/genética , Vias Visuais/fisiologia , Peixe-Zebra/fisiologia
5.
J Biol Chem ; 278(42): 40612-20, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12902335

RESUMO

The yeast genes MRS3 and MRS4 encode two members of the mitochondrial carrier family with high sequence similarity. To elucidate their function we utilized genome-wide expression profiling and found that both deletion and overexpression of MRS3/4 lead to up-regulation of several genes of the "iron regulon." We therefore analyzed the two major iron-utilizing processes, heme formation and Fe/S protein biosynthesis in vivo, in organello (intact mitochondria), and in vitro (mitochondrial extracts). Radiolabeling of yeast cells with 55Fe revealed a clear correlation between MRS3/4 expression levels and the efficiency of these biosynthetic reactions indicating a role of the carriers in utilization and/or transport of iron in vivo. Similar effects on both heme formation and Fe/S protein biosynthesis were seen in organello using mitochondria isolated from cells grown under iron-limiting conditions. The correlation between MRS3/4 expression levels and the efficiency of the two iron-utilizing processes was lost upon detergent lysis of mitochondria. As no significant changes in the mitochondrial membrane potential were observed upon overexpression or deletion of MRS3/4, our results suggest that Mrs3/4p carriers are directly involved in mitochondrial iron uptake. Mrs3/4p function in mitochondrial iron transport becomes evident under iron-limiting conditions only, indicating that the two carriers do not represent the sole system for mitochondrial iron acquisition.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Transporte de Cátions , Ferro/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/metabolismo , Northern Blotting , Citosol/metabolismo , Deleção de Genes , Genoma Fúngico , Heme/metabolismo , Membranas Intracelulares/metabolismo , Potenciais da Membrana , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação para Cima
6.
J Biol Chem ; 277(42): 39649-54, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12176980

RESUMO

To identify yeast genes involved in cobalt detoxification, we performed RNA expression profiling experiments and followed changes in gene activity upon cobalt stress on a genome-wide scale. We found that cobalt stress specifically results in an immediate and dramatic induction of genes involved in iron uptake. This response is dependent on the Aft1 protein, a transcriptional factor known to regulate a set of genes involved in iron uptake and homeostasis (iron regulon). Like iron starvation, cobalt stress induces accumulation of the Aft1 protein in the nucleus to activate transcription of its target genes. Cells lacking the AFT1 gene (aft1) are hypersensitive to cobalt as well as to other transition metals, whereas expression of the dominant AFT1-1(up) allele, which results in up-regulation of AFT1-controlled genes, confers resistance. Cobalt resistance correlates with an increase in intracellular iron in AFT1-1(up) cells, and sensitivity of aft1 cells is associated with a lack of iron accumulation. Furthermore, elevated iron levels in the growth medium suppress the cobalt sensitivity of the aft1 mutant cells, even though they increase cellular cobalt. Results presented indicate that yeast cells acquire cobalt tolerance by activating the Aft1p-dependent iron regulon and thereby increasing intracellular iron levels.


Assuntos
Cobalto/metabolismo , Ferro/metabolismo , Regulon , Proteínas de Saccharomyces cerevisiae , Alelos , Divisão Celular , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Manganês/metabolismo , Microscopia de Fluorescência , Níquel/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...