Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401388, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634407

RESUMO

In the past two decades, the application of colloidal semiconductor-metal nanoparticles (NPs) as photocatalysts for the hydrogen generation from water has been extensively studied. The present body of literature studies agrees that the photocatalytic yield strongly depends on the electron donating agent (EDA) added for scavenging the photogenerated holes. The highest reported hydrogen production rates are obtained in the presence of ionic EDAs and at high pH. The large hydrogen production rates are attributed to fast hole transfer from the NP onto the EDAs. However, the present discussions do not treat the influence of EDA-specific surface interactions. This systematic study focuses on that aspect by combining steady-state hydrogen production measurements with time-resolved and static optical spectroscopy, employing 11-mercaptoundecanoic acid-capped, Pt-tipped CdSe/CdS dot-in-rods in the presence of a large set of EDAs. Based on the experimental results, two distinct EDA groups are identified: surface-active and diffusion-limited EDAs. The largest photocatalytic efficiencies are obtained in the presence of surface-active EDAs that induce an agglomeration of the NPs. This demonstrates that the introduction of surface-active EDAs can significantly enhance the photocatalytic activity of the NPs, despite reducing their colloidal stability and inducing the formation of NP networks.

2.
Chem Mater ; 35(3): 1238-1248, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36818587

RESUMO

Cation exchange is known to occur during the synthesis of colloidal semiconductor heteronanoparticles, affecting their band gap and thus altering their optoelectronic properties. It is often neglected, especially when anisotropic heterostructures are discussed. We present a study on the role of cation exchange inevitably occurring during the growth of anisotropic dot-in-rod structures consisting of a spherical ZnSe core enclosed by a rod-shaped CdS shell. The material combination exhibits a type-II band alignment. Two reactions are compared: the shell-growth reaction of CdS on ZnSe and an exchange-only reaction of ZnSe cores to CdSe. Transmission electron microscopy and a comprehensive set of optical spectroscopy data, including linear and time-resolved absorption and fluorescence data, prove that cation exchange from ZnSe to CdSe is the dominant process in the initial stages of the shell-growth reaction. The degree of cation exchange before significant shell growth starts was determined to be about 50%, highlighting the importance of cation exchange during the heteronanostructure growth.

3.
J Chem Phys ; 156(6): 061102, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168352

RESUMO

Mobile charge carriers in heterostructured nanoparticles are relevant for applications requiring charge separation and extraction. We investigate the benchmark systems CdSe-CdS core-shell quantum dots and quantum dots in quantum rods by optical and THz pump-probe spectroscopy. We relate photoconductivity and carrier location and observe that only shell-located electrons in quantum rods contribute to an observable photoconductivity. Despite the shallow electron confinement in the quasi-type II heterostructures, core-located carriers are bound into immobile excitons that respond on external electrical fields by polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...