Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 4(2): 171-176, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35596424

RESUMO

Fluorescence correlation spectroscopy (FCS) has become an important tool in polymer science. Among various other applications the method is often applied to measure the hydrodynamic radius and the degree of fluorescent labeling of polymers in dilute solutions. Here we show that such measurements can be strongly affected by the molar mass dispersity of the studied polymers and the way of labeling. As model systems we used polystyrene and poly(methyl methacrylate) synthesized by atom transfer radical polymerization or free-radical polymerization. Thus, the polymers were either end-labeled bearing one fluorophore per chain or side-labeled with a number of fluorophores per chain proportional to the degree of polymerization.The experimentally measured autocorrelation curves were fitted with a newly derived theoretical model that uses the Schulz-Zimm distribution function to describe the dispersity in the degree of polymerization. For end-labeled polymers having a molecular weight distribution close to Schulz-Zimm, the fits yield values of the number-average degree of polymerization and the polydispersity index similar to those obtained by reference gel permeation chromatography. However, for the side-labeled polymers such fitting becomes unstable, especially for highly polydisperse systems. Brownian dynamic simulations showed that the effect is due to a mutual dependence between the fit parameters, namely, the polydispersity index and the number-average molecular weight. As a consequence, an increase of the polydispersity index can be easily misinterpreted as an increase of the molecular weight when the FCS autocorrelation curves are fitted with a standard single component model, as commonly done in the community.

2.
Nano Lett ; 12(11): 6012-7, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23094753

RESUMO

Dual color fluorescence cross-correlation spectroscopy (DC FCCS) experiments were conducted to study the coalescence and aggregation during the formation of nanoparticles. To assess the generality of the method, three completely different processes were selected to prepare the nanoparticles. Polymeric nanoparticles were formed either by solvent evaporation from emulsion nanodroplets of polymer solutions or by miniemulsion polymerization. Inorganic nanocapsules were formed by polycondensation of alkoxysilanes at the interface of nanodroplets. In all cases, DC FCCS provided fast and unambiguous information about the occurrence of coalescence and thus a deeper insight into the mechanism of nanoparticle formation. In particular, it was found that coalescence played a minor role for the emulsion-solvent evaporation process and the miniemulsion polymerization, whereas substantial coalescence was detected during the formation of the inorganic nanocapsules. These findings demonstrate that DC FCCS is a powerful tool for monitoring nanoparticles genesis.


Assuntos
Nanopartículas/química , Espectrometria de Fluorescência/métodos , Coloides/química , Emulsões/química , Hidrodinâmica , Luz , Nanocápsulas/química , Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , Poliestirenos/química , Espalhamento de Radiação , Silanos/química , Solventes/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...