Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38487392

RESUMO

The change in surface stress associated with the adsorption and oxidative stripping of carbon monoxide (CO) on (111)-textured Pt is examined using the wafer curvature method in 0.1 mol/L KHCO3 electrolyte. The curvature of the Pt cantilever electrode was monitored as a function of potential in both CO-free and CO-saturated electrolytes. Although CO adsorbs as a neutral molecule, significant compressive stress, up to -1.3 N/m, is induced in the Pt. The magnitude of the stress change correlates directly with the CO coverage and, within the detection limits of the stress measurement, is elastically reversible. Density functional theory calculations of a CO-bound Pt surface indicate that charge redistribution from the first atomic layer of Pt to subsurface layers accounts for the observed compressive stress induced by the charge neutral adsorption of CO. A better understanding of adsorbate-induced surface stress is critical for the development of material platforms for sensing and catalysis.

2.
Sensors (Basel) ; 20(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708671

RESUMO

Implantable sensors capable of real-time measurements are powerful tools to diagnose disease and maintain health by providing continuous or regular biometric monitoring. In this paper, we present a dental implantable temperature sensor that can send early warning signals in real time before the implant fails. Using a microfabrication process on a flexible polyimide film, we successfully fabricated a multi-channel temperature sensor that can be wrapped around a dental implant abutment wing. In addition, the feasibility, durability, and implantability of the sensor were investigated. First, high linearity and repeatability between electrical resistance and temperature confirmed the feasibility of the sensor with a temperature coefficient of resistance (TCR) value of 3.33 × 10-3/°C between 20 and 100 °C. Second, constant TCR values and robust optical images without damage validated sufficient thermal, chemical, and mechanical durability in the sensor's performance and structures. Lastly, the elastic response of the sensor's flexible substrate film to thermal and humidity variations, simulating in the oral environment, suggested its successful long-term implantability. Based on these findings, we have successfully developed a polymer-based flexible temperature sensor for dental implant systems.


Assuntos
Técnicas Biossensoriais , Temperatura Corporal , Doenças Transmissíveis/diagnóstico , Implantes Dentários , Termometria/instrumentação , Humanos , Microtecnologia
3.
J Memb Sci ; 5832019.
Artigo em Inglês | MEDLINE | ID: mdl-31579350

RESUMO

Improving the performance of desalination membranes requires better measurements of salt permeability in the polyamide separating layer to elucidate the thermodynamic and kinetic components of membrane permselectivity. In this work, electrochemical impedance spectroscopy (EIS) is introduced as a technique to measure the salt permeability and estimate the salt partition coefficient in thin polyamide films created using molecular layer-by-layer deposition. The impedance of supported polyamide films ranging in thickness from 3.5 nm to 28.5 nm were measured in different electrolyte solutions. Impedance spectra were modeled with equivalent circuits containing resistive and capacitive elements associated with the EIS measurement system as well as characteristic low-frequency parallel resistive and capacitive elements that are associated with the polyamide film. The characteristic polyamide membrane resistance increases with film thickness, decreases with solution concentration, and is an order of magnitude greater for a divalent cationic solution than for a monovalent cationic solution. For each polyamide film, salt permeability is calculated from the membrane resistance, and a salt partition coefficient is estimated. At the highest solution concentration measured, which is representative of brackish water desalination conditions, the calculated salt permeabilities range from P s = 1.3 × 10-16 m s-1 to 3.9 × 10-16 m s-1, and the estimated salt partition coefficients range from K s = 0.008 to 0.016. These measurements demonstrate that EIS is a powerful tool for studying membrane permselectivity through the measurement of salt permeability in thin polyamide films.

4.
ACS Appl Mater Interfaces ; 8(48): 33240-33249, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934151

RESUMO

Perfluorinated ionomers, in particular, Nafion, are a critical component in hydrogen fuel cells as the ion conducting binder within the catalyst layer in which it can be confined to thicknesses on the order of 10 nm or less. It is well reported that many physical properties, such as the Young's modulus, are thickness dependent when the film thickness is less than 100 nm. Here we utilize a cantilever bending methodology to quantify the swelling-induced stresses and relevant mechanical properties of Nafion films as a function of film thickness exposed to cyclic humidity. We observe a factor of 5 increase in the Young's modulus in films thinner than 50 nm and show how this increased stiffness translates to reduced swelling or hydration. The swelling stress was found to increase by a factor of 2 for films approximately 40 nm thick. We demonstrate that thermal annealing enhances the modulus at all film thicknesses and correlate these mechanical changes to chemical changes in the infrared absorption spectra.

5.
J Electrochem Soc ; 163(14)2016.
Artigo em Inglês | MEDLINE | ID: mdl-32831360

RESUMO

The anodic dissolution of aluminum metal was investigated in the Lewis acidic chloroaluminate ionic liquid, aluminum chloride-1-ethyl-3-methylimidazolium chloride. The investigation was conducted on aluminum rotating disk electrodes as a function of potential, ionic liquid composition, and temperature. Two different dissolution mechanisms were realized. At modest overpotentials, dissolution takes place under mixed kinetic-mass transport control. However, as the overpotential is increased to induce higher dissolution rates and/or the ionic liquid is made more acidic, the dissolution reaction transitions to a potential-independent passivation-like process ascribed to the formation of a porous solid layer of AlCl3(s). At a fixed temperature and composition, the limiting passivation current density displays Levich behavior and also scales linearly with the concentration of AlCl4 - in the ionic liquid. The heterogeneous kinetics of the Al dissolution reaction were measured in the active dissolution potential regime. The exchange current densities were independent of the composition of the ionic liquid, and the anodic transfer coefficients were close to zero and seemed to be independent of the Al grain size.

6.
ACS Appl Mater Interfaces ; 7(32): 17874-83, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26258630

RESUMO

Perfluorinated ionomers, in particular Nafion, are an essential component in hydrogen fuel cells, as both the proton exchange membrane and the binder within the catalyst layer. During normal operation of a hydrogen fuel cell, the ionomer will progressively swell and deswell in response to the changes in hydration, resulting in mechanical fatigue and ultimately failure over time. In this study, we have developed and implemented a cantilever bending technique in order to investigate the swelling-induced stresses in biaxially constrained Nafion thin films. When the deflection of a cantilever beam coated with a polymer film is monitored as it is exposed to varying humidity environments, the swelling induced stress-thickness product of the polymer film is measured. By combining the stress-thickness results with a measurement of the swelling strain as a function of humidity, as measured by quartz crystal microbalance (QCM) and X-ray reflectivity (XR), the swelling stress can be determined. An estimate of the Young's modulus of thin Nafion films as a function of relative humidity is obtained. The Young's modulus values indicate orientation of the ionic domains within the polymer films, which were confirmed by grazing incidence small-angle X-ray scattering (GISAXS). This study represents a measurement platform that can be expanded to incorporate novel ionomer systems and fuel cell components to mimic the stress state of a working hydrogen fuel cell.

7.
ACS Appl Mater Interfaces ; 7(15): 7901-11, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25812439

RESUMO

Epitaxial LiCoO2 (LCO) thin films of different orientations were fabricated by pulsed laser deposition (PLD) in order to model single-crystal behavior during electrochemical reaction. This paper demonstrates that deposition of conductive SrRuO3 between a SrTiO3 (STO) substrate and an LCO film allows (1) epitaxial growth of LCO with orientation determined by STO and (2) electrochemical measurements, such as cyclic voltammetry and impedance spectroscopy. Scanning transmission electron microscopy (S/TEM and SEM) has demonstrated an orientation relationship between LCO and STO of three orientations, (111), (110) and (100), and identified a LCO/electrolyte surface as consisting of two crystallographic facets of LCO, (001) and {104}. The difference in the orientation of LCO accounts for the difference in the exposed area of {104} planes to the electrolyte, where lithium ions have easy access to fast diffusion planes. The resistance for lithium ion transfer measured by electrochemical impedance spectroscopy had inverse correlation with exposed area of {104} plane measured by TEM. Chemical diffusivity of lithium ions in LCO was measured by fitting electrochemical impedance spectroscopy data to a modified Randles equivalent circuit and allowed us to determine its dependence on film orientation.

8.
Nano Lett ; 11(7): 2774-8, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21612218

RESUMO

We demonstrate an electrochemically driven optical switch based on absorption modulation of surface plasmon polaritons (SPPs) propagating in a metallic nanoslit waveguide containing nanocrystals of electrochromic Prussian Blue dye. Optical transmission modulation of ∼96% is achieved by electrochemically switching the dye between its oxidized and reduced states using voltages below 1 V. High spatial overlap and long interaction length between the SPP and the active material are achieved by preferential growth of PB nanocrystals on the nanoslit sidewalls. The resulting orthogonalization between the directions of light propagation and that of charge transport from the electrolyte to ultrathin active material inside the nanoslit waveguide offers significant promise for the realization of electrochromic devices with record switching speeds.


Assuntos
Nanoestruturas/química , Eletroquímica , Eletrólitos/química , Nanotecnologia , Tamanho da Partícula , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...