Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 65(3): 722-9, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18969859

RESUMO

Design and development of a dynamic interfacial pressure detector (DIPD) is reported. The DIPD measures the differential pressure as a function of time across the liquid-liquid interface of organic liquid drops (i.e., n-hexane) that repeatedly grow in water at the end of a capillary tip. Using a calibration technique based on the Young-Laplace equation, the differential pressure signal is converted, in real-time, to a relative interfacial pressure. This allows the DIPD to monitor the interfacial tension of surface active species at liquid-liquid interfaces in flow-based analytical techniques, such as flow injection analysis (FIA), sequential injection analysis (SIA) and high performance liquid chromatography (HPLC). The DIPD is similar in principle to the dynamic surface tension detector (DSTD), which monitors the surface tension at the air-liquid interface. In this report, the interfacial pressure at the hexane-water interface was monitored as analytes in the hexane phase diffused to and arranged at the hexane-water interface. The DIPD was combined with FIA to analytically measure the interfacial properties of cholesterol and Brij((R))30 at the hexane-water interface. Results show that both cholesterol and Brij((R))30 exhibit a dynamic interfacial pressure signal during hexane drop growth. A calibration curve demonstrates that the relative interfacial pressure of cholesterol in hexane increases as the cholesterol concentration increases from 100 to 10,000mugml(-1). An example of the utility of the DIPD as a selective detector for a chromatographic separation of interface-active species is also presented in the analysis of cholesterol in egg yolk by normal-phase HPLC-DIPD.

2.
Anal Chem ; 77(1): 250-8, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15623303

RESUMO

Using flow injection analysis (FIA), a pH gradient is blended in real time with a protein sample as the pH-dependent protein surface activity is measured by a dynamic surface tension detector (FIA-pH-DSTD). This instrumental system was developed as a high-throughput method for the screening of protein surface activity at the air/liquid interface as a function of pH. This method utilizes the continuous flow, drop-based dynamic surface tension detector in combination with flow injection sample introduction and blending of a steady-state concentration of protein sample with a pH gradient ranging from pH 2.0 to pH 11.5. Dynamic surface tension is measured through the differential pressure across the air/liquid interface of repeatedly growing and detaching drops. Continuous surface tension measurement is achieved for each eluting drop of 2-s length (2 muL), providing insight into both the kinetic and thermodynamic behaviors of molecular orientation processes at the liquid/air interface. Three-dimensional data are obtained, with surface tension first converted to surface pressure, which is collected as a function of elution time versus drop time. In FIA-pH-DSTD, a commercial pH probe is used to measure pH during elution time, enabling surface pressure throughout drop time to be subsequently plotted as a function of eluting pH. An automated DSTD calibration procedure and data analysis method is applied, which allows simultaneous use of two different solvents, permitting real-time dynamic surface tension data to be obtained. The method was applied to the analysis of 14 commercial purified proteins, yielding characteristic features of surface activity as a function of pH. The reproducibility of the measurement and selectivity advantage of the DSTD was shown for the analysis of serum albumins from various mammalian sources. Several applications were also suggested and discussed in order to show the potential of the method for protein and food chemistry studies and in the study of protein-polymer interactions.

3.
Anal Bioanal Chem ; 378(1): 134-43, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14618291

RESUMO

A drop-based dynamic surface-tension detector (DSTD) has been used to study the dynamic surface tension behavior of proteins denatured in guanidine thiocyanate (GndSCN). The dynamic surface tension at the air-liquid interface is obtained by measuring the internal pressure of drops that grow and detach at a specified rate. In the method the sample of interest is injected and subsequently flows to the DSTD-sensing capillary tip. For this work, a novel DSTD calibration procedure utilizing two distinct mobile phases is applied. Here, the mobile phases are aqueous with different constituents, for example GndSCN and phosphate buffer, either added or omitted. The dual-mobile phase calibration procedure gives the analyst the capability of making protein measurements in a GndSCN-phosphate buffer mobile phase, while measuring a calibration standard in another mobile phase, such as water, in which the surface tension of the calibration standard is readily available. Results are presented with drop volumes of either 2 microL (i.e. 2-s drops) or 7 microL (i.e. 7-s drops) for proteins varying in molar mass from 12,000 to 330,000 g mol(-1). We demonstrate that the DSTD can be used to determine the molar mass of proteins denatured in GndSCN. The method applies a regime where the denatured protein is detected by surface-active properties, and selectivity with regard to molar mass is contained in the dynamic component of the DSTD signal. The dynamic surface pressure signals of the denatured proteins suggest that diffusion plays a large role in the kinetics of the surface activity. The limit of detection for the denatured proteins studied ranged from 3 mg L(-1) to 14 mg L(-1). The DSTD, coupled with the novel dual-mobile phase calibration procedure, can be used to investigate the fundamental properties of proteins. Insight into the behavior at the air-liquid interface for native and denatured proteins is achieved; this is a novel tool for studying protein denaturation, complementary to other common approaches such as spectroscopy and calorimetry. Furthermore, the reported method could be widely applied to the study of effects on the interfacial properties of proteins after a variety of chemical and physical modifications that are possible with the dual-mobile phase calibration procedure.


Assuntos
Guanidinas/química , Proteínas/química , Tiocianatos/química , Calibragem , Análise de Injeção de Fluxo , Peso Molecular , Desnaturação Proteica , Propriedades de Superfície , Tensão Superficial , Fatores de Tempo , Água/química
4.
J Chromatogr A ; 1013(1-2): 77-91, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-14604110

RESUMO

We report a microchip-based detection scheme to determine the diffusion coefficient and molecular mass (to the extent correlated to molecular size) of analytes of interest. The device works by simultaneously measuring the refractive index gradient (RIG) between adjacent laminar flows at two different positions along a microchannel. The device, referred to as a microscale molecular mass sensor (micro-MMS), takes advantage of laminar flow conditions where the mixing of two streams occurs essentially by diffusion across the boundary between the two streams. Two flows merge on the microchip, one containing solvent only, referred to as the mobile phase stream and one which contains the analyte(s) of interest in the solvent, i.e. the sample stream. As these two streams merge and flow parallel to each other down the microchannel a RIG is created by the concentration gradient. The RIG is further influenced by analyte diffusion from the sample stream into the mobile phase stream. Measuring the RIG at a position close to the merging point (upstream signal) and simultaneously a selected distance further down the microchannel (downstream signal) provides real-time data related to the extent a given analyte has diffused, which can be readily correlated to analyte molecular mass by taking the ratio of the downstream-to-upstream signals. For the dual-beam RIG measurements, a diode laser output is coupled to a single mode fiber optic splitter with two output fibers. Light from each fiber passes through a graded refractive index (GRIN) lens forming a collimated beam that then passes through the microchannel and then on to a position sensitive detector (PSD). The RIG at both detection positions deflects the two collimated probe beams. The deflection angle of each beam is then measured on two separate PSDs. The micro-MMS was evaluated using polyethylene glycols (PEGs), sugars, and as a detector for size-exclusion chromatography (SEC). Peak purity can be readily identified using the micro-MMS with SEC. The limit of detection was 0.9 ppm (PEG at 11 840 g/mol) at the upstream detection position corresponding to a RI limit of detection (LOD) (3sigma) of 7-10(-8) RI. The pathlength for the RIG measurement was 200 microm and the angular LOD was 0.23 micro(rad) with a detection volume of 8 nl at both positions. The average molecular mass resolution was 9% (relative standard deviation) for a series of PEGs ranging in molecular mass from 106 to 22 800 g/mol. With this excellent mass resolution, small molecules such as monosaccharides, disaccharides, and so on, are readily distinguished. The sensor is demonstrated to readily determine unknown diffusion coefficients.


Assuntos
Microfluídica/instrumentação , Miniaturização , Cromatografia em Gel , Difusão , Peso Molecular
5.
Talanta ; 59(6): 1153-63, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18969006

RESUMO

A sequential injection analysis (SIA) system is coupled with dynamic surface tension detection (DSTD) for the purpose of studying the interfacial properties of surface-active samples. DSTD is a novel analyzer based upon a growing drop method, utilizing a pressure sensor measurement of drop pressure. The pressure signal depends on the surface tension properties of sample solution drops that grow and detach at the end of a capillary tip. In this work, SIA was used for creating a reagent concentration gradient, and for blending the reagent gradient with a steady-state sample. The sample, consisting of either sodium dodecyl sulfate (SDS) or poly(ethylene glycol) at 1470 g mol(-1) (PEG 1470), elutes with a steady-state concentration at the center of the sample plug. Reagents such as Brij(R)35, tetrabutylammonium (TBA) hydroxide and beta-cyclodextrin were introduced as a concentration gradient that begins after the sample plug has reached the steady-state concentration. By blending the reagent concentration gradient with the sample plug using SIA/DSTD, the kinetic surface pressure signal of samples mixed with various reagent concentrations is observed and evaluated in a high throughput fashion. It was found that the SIA/DSTD method consumes lesser reagent and required significantly less analysis time than traditional FIA/DSTD. Four unique chemical systems were studied with regard to how surface activity is influenced, as observed through the surface tension signal: surface activity addition, surface activity reduction due to competition, surface activity enhancement due to ion-pair formation, and surface activity reduction due to bulk phase binding chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...