Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 334(7-8): 497-510, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32351033

RESUMO

Animals respond to sleep loss with compensatory rebound sleep, and this is thought to be critical for the maintenance of physiological homeostasis. Sleep duration varies dramatically across animal species, but it is not known whether evolutionary differences in sleep duration are associated with differences in sleep homeostasis. The Mexican cavefish, Astyanax mexicanus, has emerged as a powerful model for studying the evolution of sleep. While eyed surface populations of A. mexicanus sleep approximately 8 hr each day, multiple blind cavefish populations have converged on sleep patterns that total as little as 2 hr each day, providing the opportunity to examine whether the evolution of sleep loss is accompanied by changes in sleep homeostasis. Here, we examine the behavioral and molecular response to sleep deprivation across four independent populations of A. mexicanus. Our behavioral analysis indicates that surface fish and all three cavefish populations display robust recovery sleep during the day following nighttime sleep deprivation, suggesting sleep homeostasis remains intact in cavefish. We profiled transcriptome-wide changes associated with sleep deprivation in surface fish and cavefish. While the total number of differentially expressed genes was not greater for the surface population, the surface population exhibited the highest number of uniquely differentially expressed genes than any other population. Strikingly, a majority of the differentially expressed genes are unique to individual cave populations, suggesting unique expression responses are exhibited across independently evolved cavefish populations. Together, these findings suggest sleep homeostasis is intact in cavefish despite a dramatic reduction in overall sleep duration.


Assuntos
Characidae/genética , Sono/genética , Transcriptoma/genética , Animais , Evolução Biológica , Cavernas , Characidae/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Genes/genética , Genes/fisiologia , Genética Populacional , Modelos Animais , Análise de Sequência de RNA
2.
J Vis Exp ; (146)2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31058898

RESUMO

Cave animals provide a compelling system for investigating the evolutionary mechanisms and genetic bases underlying changes in numerous complex traits, including eye degeneration, albinism, sleep loss, hyperphagia, and sensory processing. Species of cavefish from around the world display a convergent evolution of morphological and behavioral traits due to shared environmental pressures between different cave systems. Diverse cave species have been studied in the laboratory setting. The Mexican tetra, Astyanax mexicanus, with sighted and blind forms, has provided unique insights into biological and molecular processes underlying the evolution of complex traits and is well-poised as an emerging model system. While candidate genes regulating the evolution of diverse biological processes have been identified in A. mexicanus, the ability to validate a role for individual genes has been limited. The application of transgenesis and gene-editing technology has the potential to overcome this significant impediment and to investigate the mechanisms underlying the evolution of complex traits. Here, we describe a different methodology for manipulating gene expression in A. mexicanus. Approaches include the use of morpholinos, Tol2 transgenesis, and gene-editing systems, commonly used in zebrafish and other fish models, to manipulate gene function in A. mexicanus. These protocols include detailed descriptions of timed breeding procedures, the collection of fertilized eggs, injections, and the selection of genetically modified animals. These methodological approaches will allow for the investigation of the genetic and neural mechanisms underlying the evolution of diverse traits in A. mexicanus.


Assuntos
Characidae/genética , Edição de Genes , Animais , Evolução Biológica , Cavernas , Feminino , Masculino , Morfolinos , Fenótipo
3.
Dev Dyn ; 248(8): 679-687, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938001

RESUMO

BACKGROUND: Astyanax mexicanus is a well-established fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. Despite important progress in the deployment of new technologies, deep mechanistic insights into the genetic basis of evolution, development, and behavior have been limited by a lack of transgenic lines commonly used in genetic model systems. RESULTS: Here, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficient Tol2 system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter expresses enhanced green fluorescent protein ubiquitously throughout development in a surface population of Astyanax. To define specific cell-types, a Cntnap2-mCherry construct labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. CONCLUSION: The lines provide proof-of-principle for the application of Tol2 transgenic technology in A. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype-phenotype gap.


Assuntos
Técnicas de Transferência de Genes , Transposases , Animais , Animais Geneticamente Modificados/genética , Peixes , Proteínas de Fluorescência Verde/genética , Sistema da Linha Lateral , Métodos , Modelos Animais , Regiões Promotoras Genéticas , Estudo de Prova de Conceito , Ubiquitina/genética , Peixe-Zebra/genética
4.
Mol Ecol Resour ; 19(2): 456-464, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30447171

RESUMO

RNA sequencing is a popular next-generation sequencing technique for assaying genome-wide gene expression profiles. Nonetheless, it is susceptible to biases that are introduced by sample handling prior gene expression measurements. Two of the most common methods for preserving samples in both field-based and laboratory conditions are submersion in RNAlater and flash freezing in liquid nitrogen. Flash freezing in liquid nitrogen can be impractical, particularly for field collections. RNAlater is a solution for stabilizing tissue for longer-term storage as it rapidly permeates tissue to protect cellular RNA. In this study, we assessed genome-wide expression patterns in 30-day-old fry collected from the same brood at the same time point that were flash-frozen in liquid nitrogen and stored at -80°C or submerged and stored in RNAlater at room temperature, simulating conditions of fieldwork. We show that sample storage is a significant factor influencing observed differential gene expression. In particular, genes with elevated GC content exhibit higher observed expression levels in liquid nitrogen flash-freezing relative to RNAlater storage. Further, genes with higher expression in RNAlater relative to liquid nitrogen experience disproportionate enrichment for functional categories, many of which are involved in RNA processing. This suggests that RNAlater may elicit a physiological response that has the potential to bias biological interpretations of expression studies. The biases introduced to observed gene expression arising from mimicking many field-based studies are substantial and should not be ignored.


Assuntos
Congelamento , Perfilação da Expressão Gênica/métodos , Preservação Biológica/métodos , Análise de Sequência de RNA/métodos , Animais , Peixes/genética
5.
Curr Biol ; 28(22): 3700-3708.e4, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30416062

RESUMO

Sleep is critical for many aspects of brain function and is accompanied by brain-wide changes in the physiology of neurons and synapses [1, 2]. Growing evidence suggests that glial cells contribute to diverse aspects of sleep regulation, including neuronal and metabolic homeostasis [3-5], although the molecular basis for this remains poorly understood. The fruit fly, Drosophila melanogaster, displays all the behavioral and physiological characteristics of sleep [1, 2], and genetic screening in flies has identified both conserved and novel regulators of sleep and wakefulness [2, 6, 7]. With this approach, we identified Excitatory amino acid transporter 2 (Eaat2) and found that its loss from glia, but not neurons, increases sleep. We show that Eaat2 is expressed in ensheathing glia, where Eaat2 functions during adulthood to regulate sleep. Increased sleep in Eaat2-deficient flies is accompanied by reduction of metabolic rate during sleep bouts, an indicator of deeper sleep intensity. Eaat2 is a member of the conserved EAAT family of membrane transport proteins [8], raising the possibility that it affects sleep by controlling the movement of ions and neuroactive chemical messengers to and from ensheathing glia. In vitro, Eaat2 is a transporter of taurine [9], which promotes sleep when fed to flies [10]. We find that the acute effect of taurine on sleep is abolished in Eaat2 mutant flies. Together, these findings reveal a wake-promoting role for Eaat2 in ensheathing glia through a taurine-dependent mechanism.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Neuroglia/metabolismo , Sono , Taurina/metabolismo , Animais , Proteínas de Drosophila/genética , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Masculino , Neuroglia/citologia , Vigília
6.
Dev Biol ; 441(2): 319-327, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803645

RESUMO

Responding appropriately to stress is essential for survival, yet in pathological states, these responses can develop into debilitating conditions such as post-traumatic stress disorder and generalized anxiety. While genetic models have provided insight into the neurochemical and neuroanatomical pathways that underlie stress, little is known about how evolutionary processes and naturally occurring variation contribute to the diverse responses to stressful stimuli observed in the animal kingdom. The Mexican cavefish is a powerful system to address how altered genetic and neuronal systems can give rise to altered behaviors. When introduced into a novel tank, surface fish and cavefish display a stereotypic stress response, characterized by reduced exploratory behavior and increased immobility, akin to "freezing". The stress response in cave and surface forms is reduced by pharmacological treatment with the anxiolytic drug, buspirone, fortifying the notion that behavior in the assay represents a conserved stress state. We find that cave populations display reduced behavioral measures of stress compared to surface conspecifics, including increased time in the top half of the tank and fewer periods of immobility. Further, reduced stress responses are observed in multiple independently derived cavefish populations, suggesting convergence on loss of behavioral stress responses in the novel tank assay. These findings provide evidence of a naturally occurring species with two drastically different forms in which a shift in predator-rich ecology to one with few predators corresponds to a reduction in stress behavior.


Assuntos
Ansiolíticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Buspirona/farmacologia , Caraciformes , Estresse Psicológico/fisiopatologia , Animais
7.
Dev Biol ; 441(2): 328-337, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29772227

RESUMO

Feeding strategies are dependent on multi-modal sensory processing, that integrates visual, chemosensory, and mechanoreceptive cues. In many fish species, local environments and food availability dramatically influence the evolution of sensory and morphological traits that underlie feeding. The Mexican cavefish, Astyanax mexicanus, have developed robust changes in sensory-dependent behaviors, but the impact on prey detection and feeding behavior is not known. In the absence of eyes, cavefish have evolved enhanced sensitivity of the lateral line, comprised of mechanosensory organs that sense water flow and detect prey. Here, we identify evolved differences in prey capture behavior of larval cavefish that are dependent on lateral line sensitivity. Under lighted conditions, cavefish strike Artemia prey at a wider angle than surface fish; however, this difference is diminished under dark conditions. In addition, the strike distance is greater in cavefish than surface fish, revealing an ability to capture, and likely detect, prey at greater distances. Experimental ablation of the lateral line disrupts prey capture in cavefish under both light and dark conditions, while it only impacts surface fish under dark conditions. Together, these findings identify an evolutionary shift towards a dependence on the lateral line for prey capture in cavefish, providing a model for investigating how loss of visual cues impacts multi-modal sensory behaviors.


Assuntos
Evolução Biológica , Caraciformes/fisiologia , Comportamento Alimentar/fisiologia , Sistema da Linha Lateral/fisiologia , Comportamento Predatório/fisiologia , Animais
8.
Elife ; 72018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405117

RESUMO

The duration of sleep varies dramatically between species, yet little is known about the genetic basis or evolutionary factors driving this variation in behavior. The Mexican cavefish, Astyanax mexicanus, exists as surface populations that inhabit rivers, and multiple cave populations with convergent evolution on sleep loss. The number of Hypocretin/Orexin (HCRT)-positive hypothalamic neurons is increased significantly in cavefish, and HCRT is upregulated at both the transcript and protein levels. Pharmacological or genetic inhibition of HCRT signaling increases sleep in cavefish, suggesting enhanced HCRT signaling underlies the evolution of sleep loss. Ablation of the lateral line or starvation, manipulations that selectively promote sleep in cavefish, inhibit hcrt expression in cavefish while having little effect on surface fish. These findings provide the first evidence of genetic and neuronal changes that contribute to the evolution of sleep loss, and support a conserved role for HCRT in sleep regulation.


Assuntos
Characidae/fisiologia , Hipotálamo/fisiologia , Orexinas/metabolismo , Sono , Regulação para Cima , Animais , Evolução Biológica , Perfilação da Expressão Gênica , México
9.
Genome ; 61(4): 254-265, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28738163

RESUMO

In this study, we report evidence of a novel duplication of Melanocortin receptor 1 (Mc1r) in the cavefish genome. This locus was discovered following the observation of excessive allelic diversity in a ∼820 bp fragment of Mc1r amplified via degenerate PCR from a natural population of Astyanax aeneus fish from Guerrero, Mexico. The cavefish genome reveals the presence of two closely related Mc1r open reading frames separated by a 1.46 kb intergenic region. One open reading frame corresponds to the previously reported Mc1r receptor, and the other open reading frame (duplicate copy) is 975 bp in length, encoding a receptor of 325 amino acids. Sequence similarity analyses position both copies in the syntenic region of the single Mc1r locus in 16 representative craniate genomes spanning bony fish (including Astyanax) to mammals, suggesting we discovered tandem duplicates of this important gene. The two Mc1r copies share ∼89% sequence similarity and, within Astyanax, are more similar to one another compared to other melanocortin family members. Future studies will inform the precise functional significance of the duplicated Mc1r locus and if this novel copy number variant may have adaptive significance for the Astyanax lineage.


Assuntos
Characidae/genética , Proteínas de Peixes/genética , Duplicação Gênica , Receptor Tipo 1 de Melanocortina/genética , Sequência de Aminoácidos , Animais , Proteínas de Peixes/classificação , Genoma/genética , Geografia , México , Fases de Leitura Aberta/genética , Filogenia , Receptor Tipo 1 de Melanocortina/classificação , Homologia de Sequência de Aminoácidos
10.
Elife ; 62017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984575

RESUMO

Sexual arousal in flies counteracts the effects of sleep deprivation.


Assuntos
Privação do Sono , Sono , Nível de Alerta , Homeostase , Humanos , Fatores de Tempo
11.
J Exp Zool B Mol Dev Evol ; 328(6): 515-532, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28612405

RESUMO

Organisms that are isolated into extreme environments often evolve extreme phenotypes. However, global patterns of dynamic gene expression changes that accompany dramatic environmental changes remain largely unknown. The blind Mexican cavefish, Astyanax mexicanus, has evolved a number of severe cave-associated phenotypes including loss of vision and pigmentation, craniofacial bone fusions, increased fat storage, reduced sleep, and amplified nonvisual sensory systems. Interestingly, surface-dwelling forms have repeatedly entered different caves throughout Mexico, providing a natural set of "replicate" instances of cave isolation. These surrogate "ancestral" surface-dwelling forms persist in nearby rivers, enabling direct comparisons to the "derived" cave-dwelling form. We evaluated changes associated with subterranean isolation by measuring differential gene expression in two geographically distinct cave-dwelling populations (Pachón and Tinaja). To understand the impact of these expression changes on development, we performed RNA-sequencing across four critical stages during which troglomorphic traits first appear in cavefish embryos. Gene ontology (GO) studies revealed similar functional profiles evolved in both independent cave lineages. However, enrichment studies indicated that similar GO profiles were occasionally mediated by different genes. Certain "master" regulators, such as Otx2 and Mitf, appear to be important loci for cave adaptation, as remarkably similar patterns of expression were identified in both independent cave lineages. This work reveals that adaptation to an extreme environment, in two distinct cavefish lineages, evolves through a combination of unique and shared gene expression patterns. Shared expression profiles reflect common environmental pressures, while unique expression likely reflects the fact that similar adaptive traits evolve through diverse genetic mechanisms.


Assuntos
Caraciformes/embriologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Adaptação Fisiológica , Distribuição Animal , Animais , Cavernas , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Sleep ; 40(8)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541527

RESUMO

Study Objectives: Dysregulation of sleep is associated with metabolic diseases, and metabolic rate (MR) is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. Methods: We have developed a system to simultaneously measure sleep and MR in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Results: Like mammals, MR in flies is reduced during sleep and increased during sleep deprivation suggesting sleep-dependent regulation of MR is conserved across phyla. The reduction of MR during sleep is not simply a consequence of inactivity because MR is reduced ~30 minutes following the onset of sleep, raising the possibility that CO2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in MR is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in MR and sleep duration are genetically distinct. Conclusions: Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly.


Assuntos
Drosophila melanogaster/fisiologia , Metabolismo Energético , Sono/fisiologia , Animais , Metabolismo Basal/genética , Dióxido de Carbono/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metabolismo Energético/genética , Feminino , Privação de Alimentos , Masculino , Sono/genética , Fatores de Tempo , Vigília/genética , Vigília/fisiologia
13.
J Exp Biol ; 220(Pt 2): 284-293, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28100806

RESUMO

Sleep is an essential behavior exhibited by nearly all animals, and disruption of this process is associated with an array of physiological and behavioral deficits. Sleep is defined by changes in sensory gating that reduce sensory input to the brain, but little is known about the neural basis for interactions between sleep and sensory processing. Blind Mexican cavefish comprise an extant surface dwelling form and 29 cave morphs that have independently evolved increased numbers of mechanoreceptive lateral line neuromasts and convergent evolution of sleep loss. Ablation of the lateral line enhanced sleep in the Pachón cavefish population, suggesting that heightened sensory input underlies evolutionarily derived sleep loss. Targeted lateral line ablation and behavioral analysis localized the wake-promoting neuromasts in Pachón cavefish to superficial neuromasts of the trunk and cranial regions. Strikingly, lateral line ablation did not affect sleep in four other cavefish populations, suggesting that distinct neural mechanisms regulate the evolution of sleep loss in independently derived cavefish populations. Cavefish are subject to seasonal changes in food availability, raising the possibility that sensory modulation of sleep is influenced by metabolic state. We found that starvation promotes sleep in Pachón cavefish, and is not enhanced by lateral line ablation, suggesting that functional interactions occur between sensory and metabolic regulation of sleep. Taken together, these findings support a model where sensory processing contributes to evolutionarily derived changes in sleep that are modulated in accordance with food availability.


Assuntos
Characidae/fisiologia , Sistema da Linha Lateral/fisiologia , Sono , Animais , Evolução Biológica , Cavernas , México
14.
Curr Biol ; 26(7): 972-980, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27020744

RESUMO

Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the identification of translin (trsn), a highly conserved RNA/DNA binding protein, as essential for starvation-induced sleep suppression. Strikingly, trsn does not appear to regulate energy stores, free glucose levels, or feeding behavior suggesting the sleep phenotype of trsn mutant flies is not a consequence of general metabolic dysfunction or blunted response to starvation. While broadly expressed in all neurons, trsn is transcriptionally upregulated in the heads of flies in response to starvation. Spatially restricted rescue or targeted knockdown localizes trsn function to neurons that produce the tachykinin family neuropeptide Leucokinin. Manipulation of neural activity in Leucokinin neurons revealed these neurons to be required for starvation-induced sleep suppression. Taken together, these findings establish trsn as an essential integrator of sleep and metabolic state, with implications for understanding the neural mechanism underlying sleep disruption in response to environmental perturbation.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Alimentar , Humanos , Modelos Animais , Sono , Inanição
15.
Evol Dev ; 18(1): 7-18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26153732

RESUMO

Animals that colonize dark and nutrient-poor subterranean environments evolve numerous extreme phenotypes. These include dramatic changes to the craniofacial complex, many of which are under genetic control. These phenotypes can demonstrate asymmetric genetic signals wherein a QTL is detected on one side of the face but not the other. The causative gene(s) underlying QTL are difficult to identify with limited genomic resources. We approached this task by searching for candidate genes mediating fragmentation of the third suborbital bone (SO3) directly inferior to the orbit of the eye. We integrated positional genomic information using emerging Astyanax resources, and linked these intervals to homologous (syntenic) regions of the Danio rerio genome. We identified a discrete, approximately 6 Mb, conserved region wherein the gene causing SO3 fragmentation likely resides. We interrogated this interval for genes demonstrating significant differential expression using mRNA-seq analysis of cave and surface morphs across life history. We then assessed genes with known roles in craniofacial evolution and development based on GO term annotation. Finally, we screened coding sequence alterations in this region, identifying two key genes: transforming growth factor ß3 (tgfb3) and bone morphogenetic protein 4 (bmp4). Of these candidates, tgfb3 is most promising as it demonstrates significant differential expression across multiple stages of development, maps close (<1 Mb) to the fragmentation critical locus, and is implicated in a variety of other animal systems (including humans) in non-syndromic clefting and malformations of the cranial sutures. Both abnormalities are analogous to the failure-to-fuse phenotype that we observe in SO3 fragmentation. This integrative approach will enable discovery of the causative genetic lesions leading to complex craniofacial features analogous to human craniofacial disorders. This work underscores the value of cave-dwelling fish as a powerful evolutionary model of craniofacial disease, and demonstrates the power of integrative system-level studies for informing the genetic basis of craniofacial aberrations in nature.


Assuntos
Characidae/fisiologia , Animais , Sequência de Bases , Evolução Biológica , Osso e Ossos/fisiologia , Cavernas , Mapeamento Cromossômico , Proteínas de Peixes/genética , Fenômenos Fisiológicos Oculares , Locos de Características Quantitativas , Alinhamento de Sequência , Fator de Crescimento Transformador beta3/genética
16.
PLoS One ; 10(10): e0140484, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26462237

RESUMO

Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual), and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment.


Assuntos
Cavernas , Hibridização Genética , Isópodes/genética , Transcriptoma/genética , Alelos , Animais , Feminino , Ontologia Genética , Estudos de Associação Genética , Ligação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie
17.
Dev Genes Evol ; 225(6): 367-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26462499

RESUMO

Diverse changes in coloration across distant taxa are mediated through alterations in certain highly conserved pigmentation genes. Among these genes, Mc1r is a frequent target for mutation, and many documented alterations involve coding sequence changes. We investigated whether regulatory mutations in Mc1r may also contribute to pigmentation loss in the blind Mexican cavefish, Astyanax mexicanus. This species comprises multiple independent cave populations that have evolved reduced (or absent) melanic pigmentation as a consequence of living in darkness for millions of generations. Among the most salient cave-associated traits, complete absence (albinism) or reduced levels of pigmentation (brown) have long been the focus of degenerative pigmentation research in Astyanax. These two Mendelian traits have been linked to specific coding mutations in Oca2 (albinism) and Mc1r (brown). However, four of the seven caves harboring the brown phenotype exhibit unaffected coding sequences compared to surface fish. Thus, diverse genetic changes involving the same genes likely impact reduced pigmentation among cavefish populations. Using both sequence and expression analyses, we show that certain cave-dwelling populations harboring the brown mutation have substantial alterations to the putative Mc1r cis-regulatory region. Several of these sequence mutations in the Mc1r 5' region were present across multiple, independent cave populations. This study suggests that pigmentation reduction in Astyanax cavefish evolves through a combination of both coding and cis-regulatory mutations. Moreover, this study represents one of the first attempts to identify regulatory alterations linked to regressive changes in cave-dwelling populations of A. mexicanus.


Assuntos
Caraciformes/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Pigmentação da Pele/genética , Região 5'-Flanqueadora/genética , Adaptação Fisiológica/genética , Animais , Cavernas , Caraciformes/classificação , Caraciformes/crescimento & desenvolvimento , Evolução Molecular , Geografia , Mutação , Sequências Reguladoras de Ácido Nucleico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Fatores de Tempo
18.
Nat Commun ; 5: 5307, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25329095

RESUMO

Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction.


Assuntos
Characidae/genética , Evolução Molecular , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Retina/embriologia , Animais , Apoptose , Characidae/embriologia , Elementos de DNA Transponíveis , Meio Ambiente , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Genoma , Hibridização In Situ , Dados de Sequência Molecular , Fenótipo , Locos de Características Quantitativas , Retina/fisiologia
19.
PLoS One ; 8(2): e55659, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405189

RESUMO

Numerous organisms around the globe have successfully adapted to subterranean environments. A powerful system in which to study cave adaptation is the freshwater characin fish, Astyanax mexicanus. Prior studies in this system have established a genetic basis for the evolution of numerous regressive traits, most notably vision and pigmentation reduction. However, identification of the precise genetic alterations that underlie these morphological changes has been delayed by limited genetic and genomic resources. To address this, we performed a transcriptome analysis of cave and surface dwelling Astyanax morphs using Roche/454 pyrosequencing technology. Through this approach, we obtained 576,197 Pachón cavefish-specific reads and 438,978 surface fish-specific reads. Using this dataset, we assembled transcriptomes of cave and surface fish separately, as well as an integrated transcriptome that combined 1,499,568 reads from both morphotypes. The integrated assembly was the most successful approach, yielding 22,596 high quality contiguous sequences comprising a total transcriptome length of 21,363,556 bp. Sequence identities were obtained through exhaustive blast searches, revealing an adult transcriptome represented by highly diverse Gene Ontology (GO) terms. Our dataset facilitated rapid identification of sequence polymorphisms between morphotypes. These data, along with positional information collected from the Danio rerio genome, revealed several syntenic regions between Astyanax and Danio. We demonstrated the utility of this positional information through a QTL analysis of albinism in a surface x Pachón cave F(2) pedigree, using 65 polymorphic markers identified from our integrated assembly. We also adapted our dataset for an RNA-seq study, revealing many genes responsible for visual system maintenance in surface fish, whose expression was not detected in adult Pachón cavefish. Conversely, several metabolism-related genes expressed in cavefish were not detected in surface fish. This resource will enable powerful genetic and genomic analyses in the future that will better clarify the heritable genetic changes governing adaptation to the cave environment.


Assuntos
Biomarcadores/metabolismo , Cavernas , Caraciformes/genética , Proteínas de Peixes/genética , Variação Genética/genética , Transcriptoma/genética , Animais , Sequência de Bases , Caraciformes/classificação , Regulação da Expressão Gênica , Ligação Genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...