Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(7): eadl0402, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354253

RESUMO

The utilization of polarized neutrons is of great importance in scientific disciplines spanning materials science, physics, biology, and chemistry. However, state-of-the-art multilayer polarizing neutron optics have limitations, particularly low specular reflectivity and polarization at higher scattering vectors/angles, and the requirement of high external magnetic fields to saturate the polarizer magnetization. Here, we show that, by incorporating 11B4C into Fe/Si multilayers, amorphization and smooth interfaces can be achieved, yielding higher neutron reflectivity, less diffuse scattering, and higher polarization. Magnetic coercivity is eliminated, and magnetic saturation can be reached at low external fields (>2 militesla). This approach offers prospects for substantial improvement in polarizing neutron optics with nonintrusive positioning of the polarizer, enhanced flux, increased data accuracy, and further polarizing/analyzing methods at neutron scattering facilities.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34874279

RESUMO

In this work, we investigated the effect of Ag doping (2-20 at.%) on the phase formation of iron mononitride (FeN) thin films. Together with deposition of FeN using reactive dc magnetron sputtering, Ag was also co-sputtered at various doping levels between 2-20 at.%. We found that doping of Ag around 5 at.% is optimum to not only improve the thermal stability of FeN but also to reduce intrinsic defects that are invariably present in (even in epitaxial) FeN. Conversion electron Mössbauer spectroscopy and N K-edge x-ray near edge absorption measurements clearly reveal a reduction of defects in Ag doped FeN samples. Moreover, Fe self-diffusion measurements carried out using secondary ion mass spectroscopy depth-profiling and polarized neutron reflectivity in57Fe enriched samples exhibit an appreciable reduction in Fe self-diffusion in Ag doped FeN samples. Ag being immiscible with Fe and non-reactive with N, occupies grain-boundary positions as nanoparticles and prohibits the fast Fe self-diffusion in FeN.

3.
Nat Commun ; 11(1): 1728, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265498

RESUMO

LaTiOxNy oxynitride thin films are employed to study the surface modifications at the solid-liquid interface that occur during photoelectrocatalytic water splitting. Neutron reflectometry and grazing incidence x-ray absorption spectroscopy were utilised to distinguish between the surface and bulk signals, with a surface sensitivity of 3 nm. Here we show, contrary to what is typically assumed, that the A cations are active sites that undergo oxidation at the surface as a consequence of the water splitting process. Whereas, the B cations undergo local disordering with the valence state remaining unchanged. This surface modification reduces the overall water splitting efficiency, but is suppressed when the oxynitride thin films are decorated with a co-catalyst. With this example we present the possibilities of surface sensitive studies using techniques capable of operando measurements in water, opening up new opportunities for applications to other materials and for surface sensitive, operando studies of the water splitting process.

4.
ACS Appl Mater Interfaces ; 12(7): 8780-8787, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31877013

RESUMO

Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semiconductor-ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure and their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the band gap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the overall ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs and magnetic moments outside the detection limits on the pure InAs side. This work presents a step toward realizing defect-free semiconductor-ferromagnetic insulator epitaxial hybrids for spin-lifted quantum and spintronic applications without external magnetic fields.

5.
Phys Chem Chem Phys ; 21(30): 16444-16450, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31120073

RESUMO

Li ion transport through thin (14-22 nm) amorphous silicon layers adjacent to lithium metal oxide layers (lithium niobate) was studied by in situ neutron reflectometry experiments and the control mechanism was determined. It was found that the interface between amorphous silicon and the oxide material does not hinder Li transport. It is restricted by Li diffusion in the silicon material. This finding based on in situ experiments confirms results obtained ex situ and destructively by secondary ion mass spectrometry (SIMS) depth profiling investigations. The Li permeabilities obtained from the present experiments are in agreement with those obtained from ex situ SIMS measurements showing similar activation enthalpies.

6.
Sci Rep ; 8(1): 17607, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514917

RESUMO

We present in-situ self-diffusion experiments in solids, which were carried out by Focussing Neutron Reflectometry on isotope multilayers. This new approach offers the following advantages in comparison to classical ex-situ measurements: (1) Identification and continuous measurement of a time dependence of diffusivities, (2) significant reduction of error limits of diffusivities, and (3) substantial reduction of the necessary experimental time. In the framework of a case study, yet unknown self-diffusivities in amorphous germanium are measured at various temperatures quasi-continuously, each during isothermal annealing. A significant decrease of diffusivities as a function of annealing time by one order of magnitude is detected that is attributed to structural relaxation accompanied by defect annihilation. In metastable equilibrium the diffusivities follow the Arrhenius law between 375 and 412 °C with an activation energy of Q = (2.11 ± 0.12) eV. The diffusivities are five orders of magnitude higher than in germanium single crystals at 400 °C, mainly due to the lower activation energy.

7.
Phys Chem Chem Phys ; 20(36): 23233-23243, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30175350

RESUMO

Li permeation through ultrathin Cr, Si and C layers and interfaces is of interest in the optimization of lithium ion batteries with respect to the control of Li flux. Twenty-one LiNbO3 layers (9 nm), which serve as solid state Li reservoirs, were sputter deposited in an alternating sequence of enriched 6Li or 7Li isotope fractions spaced with (8 nm) thin Cr, Si and C layers. The Li isotope contrast was used to measure Li permeation using depth profiling by secondary ion mass spectrometry and neutron reflectometry on a nanometer scale. Extremely low Li permeation for Cr and Si at room temperature exemplifies the effective blocking of Li movement at least for five years. However, Li permeation through C layers was found to be faster than through Cr and Si layers. With temperature, the Li permeation is enhanced through Cr as compared to that through Si layers. Furthermore, material characterisation shows amorphous LiNbO3, C and Si layers and polycrystalline Cr layers (with 80% elemental bcc chromium and 20% chromium-oxide situated at Cr/LiNbO3 interfaces). Annealing in air at 100 °C (373 K) does not oxidize the Cr layers any further. A stress of 12 GPa, which was measured in Cr spacer layers at room temperature, remains unchanged upon annealing. The origin of a weak ferromagnetic order measured at room temperature (300 K) was attributed to some traces of Cr and Si inside LiNbO3.

8.
Rev Sci Instrum ; 89(3): 035105, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604763

RESUMO

Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

9.
Sci Rep ; 7(1): 15177, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127327

RESUMO

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

10.
Sci Rep ; 7(1): 10734, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878313

RESUMO

Besides epitaxial mismatch that can be accommodated by lattice distortions and/or octahedral rotations, ferroelectric-ferromagnetic interfaces are affected by symmetry mismatch and subsequent magnetic ordering. Here, we have investigated La0.67 Sr0.33 MnO3 (LSMO) samples with varying underlying unit cells (uc) of BaTiO3 (BTO) layer on (001) and (110) oriented substrates in order to elucidate the role of symmetry mismatch. Lattice mismatch for 3 uc of BTO and symmetry mismatch for 10 uc of BTO, both associated with local MnO6 octahedral distortions of the (001) LSMO within the first few uc, are revealed by scanning transmission electron microscopy. Interestingly, we find exchange bias along the in-plane [110]/[100] directions only for the (001) oriented samples. Polarized neutron reflectivity measurements confirm the existence of a layer with zero net moment only within (001) oriented samples. First principle density functional calculations show that even though the bulk ground state of LSMO is ferromagnetic, a large lattice constant together with an excess of La can stabilize an antiferromagnetic LaMnO3-type phase at the interface region and explain the experimentally observed exchange bias. Atomic scale tuning of MnO6 octahedra can thus be made possible via symmetry mismatch at heteroepitaxial interfaces. This aspect can act as a vital parameter for structure-driven control of physical properties.

11.
Sci Rep ; 6: 33986, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677227

RESUMO

Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

12.
Phys Rev Lett ; 116(2): 025901, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26824552

RESUMO

The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on ^{29}Si/^{nat}Si heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4±0.3) eV. In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C, which can be interpreted as the consequence of a high diffusion entropy.

13.
Nano Lett ; 13(3): 1237-44, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23360370

RESUMO

Lithium migration in nanostructured electrode materials is important for an understanding and improvement of high energy density lithium batteries. An approach to measure lithium transport through nanometer thin layers of relevant electrochemical materials is presented using amorphous silicon as a model system. A multilayer consisting of a repetition of five [(6)LiNbO3(15 nm)/Si (10 nm)/(nat)LiNbO3 (15 nm)/Si (10 nm)] units is used for analysis, where LiNbO3 is a Li tracer reservoir. It is shown that the change of the relative (6)Li/(7)Li isotope fraction in the LiNbO3 layers by lithium diffusion through the nanosized silicon layers can be monitored nondestructively by neutron reflectometry. The results can be used to calculate transport parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...