Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(9): 7821-7829, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375632

RESUMO

Symmetric molecules exist as distinct nuclear spin isomers (NSIMs). A deeper understanding of their properties, including interconversion of different NSIMs, requires efficient techniques for NSIM enrichment. In this work, selective hydrogenation of acetylene with parahydrogen (p-H2) was used to achieve the enrichment of ethylene NSIMs and to study their equilibration processes. The effect of the stereoselectivity of H2 addition to acetylene on the imbalance of ethylene NSIMs was experimentally demonstrated by using three different heterogeneous catalysts (an immobilized Ir complex and two supported Pd catalysts). The interconversion of NSIMs with time during ethylene storage was studied using NMR spectroscopy by reacting ethylene with bromine water, which rendered the p-H2-derived protons in the produced 2-bromoethan(2H)ol (BrEtOD) magnetically inequivalent, thereby revealing the non-equilibrium nuclear spin order of ethylene. A thorough analysis of the shape and transformation of the 1H NMR spectra of hyperpolarized BrEtOD allowed us to reveal the initial distribution of produced ethylene NSIMs and their equilibration processes. Comparison of the results obtained with three different catalysts was key to properly attributing the derived characteristic time constants to different ethylene NSIM interconversion processes: ∼3-6 s for interconversion between NSIMs with the same inversion symmetry (i.e., within g or u manifolds) and ∼1700-2200 s between NSIMs with different inversion symmetries (i.e., between g and u manifolds).

2.
Nanomaterials (Basel) ; 11(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34947637

RESUMO

This research was focused on studying the performance of the Pd1Ag3/Al2O3 single-atom alloy (SAA) in the liquid-phase hydrogenation of di-substituted alkyne (1-phenyl-1-propyne), and development of a kinetic model adequately describing the reaction kinetic being also consistent with the reaction mechanism suggested for alkyne hydrogenation on SAA catalysts. Formation of the SAA structure on the surface of PdAg3 nanoparticles was confirmed by DRIFTS-CO, revealing the presence of single-atom Pd1 sites surrounded by Ag atoms (characteristic symmetrical band at 2046 cm-1) and almost complete absence of multiatomic Pdn surface sites (<0.2%). The catalyst demonstrated excellent selectivity in alkyne formation (95-97%), which is essentially independent of P(H2) and alkyne concentration. It is remarkable that selectivity remains almost constant upon variation of 1-phenyl-1-propyne (1-Ph-1-Pr) conversion from 5 to 95-98%, which indicates that a direct alkyne to alkane hydrogenation is negligible over Pd1Ag3 catalyst. The kinetics of 1-phenyl-1-propyne hydrogenation on Pd1Ag3/Al2O3 was adequately described by the Langmuir-Hinshelwood type of model developed on the basis of the reaction mechanism, which suggests competitive H2 and alkyne/alkene adsorption on single atom Pd1 centers surrounded by inactive Ag atoms. The model is capable to describe kinetic characteristics of 1-phenyl-1-propyne hydrogenation on SAA Pd1Ag3/Al2O3 catalyst with the excellent explanation degree (98.9%).

3.
Nanomaterials (Basel) ; 8(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274218

RESUMO

Formation of PdIn intermetallic nanoparticles supported on α-Al2O3 was investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and hydrogen temperature-programmed desorption (H2-TPD) methods. The metals were loaded as heterobimetallic Pd(µ-O2CMe)4In(O2CMe) complex to ensure intimate contact between Pd and In. Reduction in H2 at 200 °C resulted in Pd-rich PdIn alloy as evidenced by XRD and the disappearance of Pd hydride. A minor amount of Pd1In1 intermetallic phase appeared after reduction at 200 °C and its formation was accomplished at 400 °C. Neither monometallic Pd or in nor other intermetallic structures were found after reduction at 400⁻600 °C. Catalytic performance of Pd1In1/α-Al2O3 was studied in the selective liquid-phase diphenylacetylene (DPA) hydrogenation. It was found that the reaction rate of undesired alkene hydrogenation is strongly reduced on Pd1In1 nanoparticles enabling effective kinetic control of the hydrogenation, and the catalyst demonstrated excellent selectivity to alkene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...