Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(36): 24993-25007, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37698012

RESUMO

Spectral neutron imaging methods provide valuable insights into the characterization of hydrogenous materials, including battery electrolytes. However, their application is constrained by sample geometry, setup parameters, and material chemistries, especially when studying physico-chemical changes in battery electrolytes. To address these limitations, we present a framework for simulating and optimizing the investigation of hydrogenous materials. Our approach combines quantitative modeling with experimental data to predict and optimize the contrast achievable in wavelength-resolved neutron imaging methods, thereby maximizing the information obtained in specific neutron imaging setups. While initially demonstrated at the BOA beamline of the Paul Scherrer Institute, this framework is applicable to any continuous source with spectral neutron imaging capabilities with a chopper disk. This work establishes a pathway for accurate studies of hydrogenous materials and their physico-chemical behavior, paving the way for advancements in the field of material characterization with wavelength-resolved neutron imaging.

2.
Sci Adv ; 9(39): eadi0586, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774020

RESUMO

Understanding the limitations of electrolyte mixtures under extreme conditions is key to ensure reliable and safe battery performance. Among advanced characterization methods, time-of-flight neutron imaging (ToF-NI) is unique for its capability to map physicochemical changes of H-containing materials inside metallic casings and battery packs. The technique, however, requires long exposures in pulsed sources, which limits its applicability, particularly for analysis at low temperatures. To overcome these limitations, we use high-duty cycle ToF-NI at a continuous source, demonstrating its capability to expose physical and chemical changes of electrolytes due to variations in the overall molecular diffusion. The strategy described in this work reduces the exposure required and provides the baseline to study the thermal stability of electrolyte mixtures, from the proofing of state-of-the-art electrolyte mixtures up to their performance in batteries. This analysis and methodology apply to hydrogenous materials well beyond electrolytes for a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...