Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 371(6533): 1056-1059, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33602865

RESUMO

Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.

2.
J Phys Condens Matter ; 30(49): 494001, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30451155

RESUMO

The unoccupied electronic structure of stacked layers of copper(II)phthalocyanine (CuPc) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) on Ag(1 1 1) has been investigated by means of two-photon photoemission (2PPE). We find a rich electronic structure comprising at least five unoccupied electronic states which we identify based on their energetic position and their dispersion in momentum space. More specifically, we observe the first and the second image-potential states of the modified Ag(1 1 1) surface, as well as the metal-organic interface state (IS) inherent to the PTCDA/Ag(1 1 1) interface. Moreover, two additional molecular features are observed for the CuPc/PTCDA/Ag(1 1 1) system which we attribute to an unoccupied molecular orbital (LUMO + 2) of CuPc. The 2PPE intensity of the IS exhibits a pronounced dependence on the pump photon energy, which closely follows the optical absorption of the outer molecular layer. This strongly points to charge transfer from the optically excited molecules to the interface state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...