Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 151(6): 3719, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778181

RESUMO

Unmanned aerial vehicles are rapidly advancing and becoming ubiquitous in an unlimited number of applications, from parcel delivery to people transportation. As unmanned aerial vehicle (UAV) markets expand, the increased acoustic nuisance on population becomes a more acute problem. Previous aircraft noise assessments have highlighted the necessity of a psychoacoustic metric for quantification of human audio perception. This study presents a framework for estimating propeller-based UAV auditory detection probability on the ground for a listener in a real-life scenario. The detection probability is derived by using its free-field measured acoustic background and estimating the UAV threshold according to a physiological model of the auditory pathway. The method is presented via results of an exemplar measurement in an anechoic environment with a single two- and five-bladed propeller. It was found that the auditory detection probability is primarily affected by the background noise level, whereas the number of blades is a less significant parameter. The significance of the proposed method lies in providing a quantitative evaluation of auditory detection probability of the UAV on the ground in the presence of a given soundscape. The results of this work are of practical significance since the method can aid anyone who plans a hovering flight mode.


Assuntos
Aeronaves , Tecnologia de Sensoriamento Remoto , Acústica , Humanos , Probabilidade , Tecnologia de Sensoriamento Remoto/métodos , Dispositivos Aéreos não Tripulados
2.
J Acoust Soc Am ; 147(6): 3932, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32611165

RESUMO

This paper employs serrated leading edges to inject streamwise vorticity to the downstream boundary layer and wake to manipulate the flow field and noise sources near the blunt trailing edge of an asymmetric aerofoil. The use of a large serration amplitude is found to be effective to suppress the first noise source-bluntness-induced vortex shedding tonal noise-through the destruction of the coherent eigenmodes in the wake. The second noise source is the instability noise, which is produced by the interaction between the boundary layer instability and separation bubble near the blunt edge. The main criterion needed to suppress this noise source is related to a small serration wavelength because, through the generation of more streamwise vortices, it would facilitate a greater level of destructive interaction with the separation bubble. If the leading edge has both a large serration amplitude and wavelength, the interaction between the counter-rotating vortices themselves would trigger a turbulent shear layer through an inviscid mechanism. The turbulent shear layer will produce strong hydrodynamic pressure fluctuations to the trailing edge, which then scatter into broadband noise and transform into a trailing edge noise mechanism. This would become the third noise source that can be identified in several serrated leading edge configurations. Overall, a leading edge with a large serration amplitude and small serration wavelength appears to be the optimum choice to suppress the first and second noise sources and, at the same time, avoid the generation of the third noise source.

3.
J Acoust Soc Am ; 142(2): 561, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28863568

RESUMO

Sound generation due to an orifice plate in a hard-walled flow duct which is commonly used in air distribution systems (ADS) and flow meters is investigated. The aim is to provide an understanding of this noise generation mechanism based on measurements of the source pressure distribution over the orifice plate. A simple model based on Curle's acoustic analogy is described that relates the broadband in-duct sound field to the surface pressure cross spectrum on both sides of the orifice plate. This work describes careful measurements of the surface pressure cross spectrum over the orifice plate from which the surface pressure distribution and correlation length is deduced. This information is then used to predict the radiated in-duct sound field. Agreement within 3 dB between the predicted and directly measured sound fields is obtained, providing direct confirmation that the surface pressure fluctuations acting over the orifice plates are the main noise sources. Based on the developed model, the contributions to the sound field from different radial locations of the orifice plate are calculated. The surface pressure is shown to follow a U3.9 velocity scaling law and the area over which the surface sources are correlated follows a U1.8 velocity scaling law.


Assuntos
Acústica/instrumentação , Ar Condicionado/instrumentação , Arquitetura de Instituições de Saúde/instrumentação , Ruído , Desenho de Equipamento , Modelos Teóricos , Movimento (Física) , Pressão , Propriedades de Superfície , Fatores de Tempo
4.
PLoS One ; 10(9): e0134582, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394213

RESUMO

We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.


Assuntos
Voo Animal/fisiologia , Modelos Biológicos , Estorninhos/fisiologia , Animais , Fenômenos Biomecânicos , Europa (Continente) , Reologia
5.
J Acoust Soc Am ; 135(5): 2571-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24815241

RESUMO

This work develops a theoretical framework for acoustic cloak scattering analysis in a low speed non-stationary fluid that is simply described as a potential flow. The equivalent sound source induced by the moving fluid local to the cloak is analytically constructed and is then estimated using Born approximation. The far-field scattering can thereafter be obtained using the associated Green's function of the convected wave equation. The results demonstrate that the proposed analytical approach, which might be helpful in the design and evaluation of cloaking systems, effectively elucidates key characteristics of the relevant physics. In addition, it can be seen that, in a moving fluid, the so-called convected cloaking design achieves better cloaking performance than the classical cloaking design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...