Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(12): ar115, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672339

RESUMO

Directional cell migration is driven by the conversion of oscillating edge motion into lasting periods of leading edge protrusion. Actin polymerization against the membrane and adhesions control edge motion, but the exact mechanisms that determine protrusion period remain elusive. We addressed this by developing a computational model in which polymerization of actin filaments against a deformable membrane and variable adhesion dynamics support edge motion. Consistent with previous reports, our model showed that actin polymerization and adhesion lifetime power protrusion velocity. However, increasing adhesion lifetime decreased the protrusion period. Measurements of adhesion lifetime and edge motion in migrating cells confirmed that adhesion lifetime is associated with and promotes protrusion velocity, but decreased duration. Our model showed that adhesions' control of protrusion persistence originates from the Brownian ratchet mechanism for actin filament polymerization. With longer adhesion lifetime or increased-adhesion density, the proportion of actin filaments tethered to the substrate increased, maintaining filaments against the cell membrane. The reduced filament-membrane distance generated pushing force for high edge velocity, but limited further polymerization needed for protrusion duration. We propose a mechanism for cell edge protrusion in which adhesion strength regulates actin filament polymerization to control the periods of leading edge protrusion.


Assuntos
Actinas , Modelos Biológicos , Actinas/metabolismo , Movimento Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Pseudópodes/metabolismo
2.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292666

RESUMO

Correlated flows and forces that emerge from active matter orchestrate complex processes such as shape regulation and deformations in biological cells and tissues. The active materials central to cellular mechanics are cytoskeletal networks, where molecular motor activity drives deformations and remodeling. Here, we investigate deformation modes in actin networks driven by the molecular motor myosin II through quantitative fluorescence microscopy. We examine the deformation anisotropy at different length scales in networks of entangled, cross-linked, and bundled actin. In sparsely cross-linked networks, we find myosin-dependent biaxial buckling modes across length scales. In cross-linked bundled networks, uniaxial contraction is predominate on long length scales, while the uniaxial or biaxial nature of the deformation depends on bundle microstructure at shorter length scales. The anisotropy of deformations may provide insight to regulation of collective behavior in a variety of active materials.

3.
Biophys J ; 120(10): 1957-1970, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33798565

RESUMO

The actin cytoskeleton is a soft, structural material that underlies biological processes such as cell division, motility, and cargo transport. The cross-linked actin filaments self-organize into a myriad of architectures, from disordered meshworks to ordered bundles, which are hypothesized to control the actomyosin force generation that regulates cell migration, shape, and adhesion. Here, we use fluorescence microscopy and simulations to investigate how actin bundle architectures with varying polarity, spacing, and rigidity impact myosin II dynamics and force generation. Microscopy reveals that mixed-polarity bundles formed by rigid cross-linkers support slow, bidirectional myosin II filament motion, punctuated by periods of stalled motion. Simulations reveal that these locations of stalled myosin motion correspond to sustained, high forces in regions of balanced actin filament polarity. By contrast, mixed-polarity bundles formed by compliant, large cross-linkers support fast, bidirectional motion with no traps. Simulations indicate that trap duration is directly related to force magnitude and that the observed increased velocity corresponds to lower forces resulting from both the increased bundle compliance and filament spacing. Our results indicate that the microstructures of actin assemblies regulate the dynamics and magnitude of myosin II forces, highlighting the importance of architecture and mechanics in regulating forces in biological materials.


Assuntos
Actinas , Miosina Tipo II , Citoesqueleto de Actina , Actomiosina , Miosinas
4.
Proc Natl Acad Sci U S A ; 114(47): E10037-E10045, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114058

RESUMO

Molecular motors embedded within collections of actin and microtubule filaments underlie the dynamics of cytoskeletal assemblies. Understanding the physics of such motor-filament materials is critical to developing a physical model of the cytoskeleton and designing biomimetic active materials. Here, we demonstrate through experiments and simulations that the rigidity and connectivity of filaments in active biopolymer networks regulates the anisotropy and the length scale of the underlying deformations, yielding materials with variable contractility. We find that semiflexible filaments can be compressed and bent by motor stresses, yielding materials that undergo predominantly biaxial deformations. By contrast, rigid filament bundles slide without bending under motor stress, yielding materials that undergo predominantly uniaxial deformations. Networks dominated by biaxial deformations are robustly contractile over a wide range of connectivities, while networks dominated by uniaxial deformations can be tuned from extensile to contractile through cross-linking. These results identify physical parameters that control the forces generated within motor-filament arrays and provide insight into the self-organization and mechanics of cytoskeletal assemblies.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Proteínas de Transporte/química , Citoesqueleto/química , Filaminas/química , Proteínas dos Microfilamentos/química , Microtúbulos/química , Miosinas/química , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/metabolismo , Galinhas , Simulação por Computador , Citoesqueleto/ultraestrutura , Filaminas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Miosinas/metabolismo , Coelhos
5.
Biophys J ; 108(8): 1997-2006, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25902439

RESUMO

Myosin II isoforms with varying mechanochemistry and filament size interact with filamentous actin (F-actin) arrays to generate contractile forces in muscle and nonmuscle cells. How myosin II force production is shaped by isoform-specific motor properties and environmental stiffness remains poorly understood. Here, we used computer simulations to analyze force production by an ensemble of myosin motors against an elastically tethered actin filament. We found that force output depends on two timescales: the duration of F-actin attachment, which varies sharply with the ensemble size, motor duty ratio, and external load; and the time to build force, which scales with the ensemble stall force, gliding speed, and environmental stiffness. Although force-dependent kinetics were not required to sense changes in stiffness, the myosin catch bond produced positive feedback between the attachment time and force to trigger switch-like transitions from transient attachments, generating small forces, to high-force-generating runs. Using parameters representative of skeletal muscle myosin, nonmuscle myosin IIB, and nonmuscle myosin IIA revealed three distinct regimes of behavior, respectively: 1) large assemblies of fast, low-duty ratio motors rapidly build stable forces over a large range of environmental stiffness; 2) ensembles of slow, high-duty ratio motors serve as high-affinity cross-links with force buildup times that exceed physiological timescales; and 3) small assemblies of low-duty ratio motors operating at intermediate speeds are poised to respond sharply to changes in mechanical context-at low force or stiffness, they serve as low-affinity cross-links, but they can transition to force production via the positive-feedback mechanism described above. Together, these results reveal how myosin isoform properties may be tuned to produce force and respond to mechanical cues in their environment.


Assuntos
Mecanotransdução Celular , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Miosina Tipo II/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
6.
Dev Cell ; 30(4): 365-6, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25158851

RESUMO

Intracellular transport of organelles and proteins is driven by multiple ATP-dependent processes. Recently in Cell, Guo et al. (2014) developed a technique, force-spectrum microscopy, to measure intracellular forces and demonstrate that large motion of cellular components can be produced by random ATP-dependent fluctuations within the cytoplasm.


Assuntos
Citoplasma/química , Microscopia de Força Atômica/métodos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...