Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187524

RESUMO

Colorectal cancer (CRC) is the second most deadly cancer worldwide. One key reason is the failure of therapies that target RAS proteins, which represent approximately 40% of CRC cases. Despite the recent discovery of multiple alternative signalling pathways that contribute to resistance, durable therapies remain an unmet need. Here, we use liquid chromatography/mass spectrometry (LC/MS) analyses on Drosophila CRC tumour models to identify multiple metabolites in the glucuronidation pathway-a toxin clearance pathway-as upregulated in trametinib-resistant RAS/APC/P53 ("RAP") tumours compared to trametinib-sensitive RASG12V tumours. Elevating glucuronidation was sufficient to direct trametinib resistance in RASG12V animals while, conversely, inhibiting different steps along the glucuronidation pathway strongly reversed RAP resistance to trametinib. For example, blocking an initial HDAC1-mediated deacetylation step with the FDA-approved drug vorinostat strongly suppressed trametinib resistance in Drosophila RAP tumours. We provide functional evidence that pairing oncogenic RAS with hyperactive WNT activity strongly elevates PI3K/AKT/GLUT signalling, which in turn directs elevated glucose and subsequent glucuronidation. Finally, we show that this mechanism of trametinib resistance is conserved in an KRAS/APC/TP53 mouse CRC tumour organoid model. Our observations demonstrate a key mechanism by which oncogenic RAS/WNT activity promotes increased drug clearance in CRC. The majority of targeted therapies are glucuronidated, and our results provide a specific path towards abrogating this resistance in clinical trials.

2.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187607

RESUMO

Approximately 40% of colorectal cancer (CRC) cases are characterized by KRAS mutations, rendering them insensitive to most CRC therapies. While the reasons for this resistance remain incompletely understood, one key aspect is genetic complexity: in CRC, oncogenic KRAS is most commonly paired with mutations that alter WNT and P53 activities ("RAP"). Here, we demonstrate that elevated WNT activity upregulates canonical (NF-κB) signalling in both Drosophila and human RAS mutant tumours. This upregulation required Toll-1 and Toll-9 and resulted in reduced efficacy of RAS pathway targeted drugs such as the MEK inhibitor trametinib. Inhibiting WNT activity pharmacologically significantly suppressed trametinib resistance in RAP tumours and more genetically complex RAP-containing 'patient avatar' models. WNT/MEK drug inhibitor combinations were further improved by targeting brm, shg, ago, rhoGAPp190 and upf1, highlighting these genes as candidate biomarkers for patients sensitive to this duel approach. These findings shed light on how genetic complexity impacts drug resistance and proposes a therapeutic strategy to reverse this resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...