Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 101(8): 1099-107, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17574677

RESUMO

The X-ray crystal structure of the Co(II)-loaded form of the aminopeptidase from Aeromonas proteolytica ([CoCo(AAP)]) was solved to 2.2A resolution. [CoCo(AAP)] folds into an alpha/beta globular domain with a twisted beta-sheet hydrophobic core sandwiched between alpha-helices, identical to [ZnZn(AAP)]. Co(II) binding to AAP does not introduce any major conformational changes to the overall protein structure and the amino acid residues ligated to the dicobalt(II) cluster in [CoCo(AAP)] are the same as those in the native Zn(II)-loaded structure with only minor perturbations in bond lengths. The Co(II)-Co(II) distance is 3.3A. Tris(hydroxymethyl)aminomethane (Tris) coordinates to the dinuclear Co(II) active site of AAP with one of the Tris hydroxyl oxygen atoms (O4) forming a single oxygen atom bridge between the two Co(II) ions. This is the only Tris atom coordinated to the metals with Co1-O and Co2-O bonds distances of 2.2 and 1.9A, respectively. Each of the Co(II) ions resides in a distorted trigonal bipyramidal geometry. This important structure bridges the gap between previous structural and spectroscopic studies performed on AAP and is discussed in this context.


Assuntos
Aeromonas/enzimologia , Aminopeptidases/química , Aminopeptidases/metabolismo , Cobalto/química , Trometamina , Sítios de Ligação , Cobalto/metabolismo , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Dobramento de Proteína , Zinco/química
2.
Biochemistry ; 43(30): 9620-8, 2004 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-15274616

RESUMO

Binding of the competitive, slow-binding inhibitor bestatin ([(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoy]-leucine) to the aminopeptidase from Aeromonas proteolytica (AAP) was examined by both spectroscopic and crystallographic methods. Electronic absorption spectra of the catalytically competent [Co_(AAP)], [CoCo(AAP)], and [ZnCo(AAP)] enzymes recorded in the presence of bestatin revealed that both of the divalent metal ions in AAP are involved in binding bestatin. The electron paramagnetic resonance (EPR) spectrum of the [CoCo(AAP)]-bestatin complex exhibited no observable perpendicular- or parallel-mode signal. These data indicate that the two Co(II) ions in AAP are antiferromagnetically coupled yielding an S = 0 ground state and suggest that a single oxygen atom bridges between the two divalent metal ions. The EPR data obtained for [CoZn(AAP)] and [ZnCo(AAP)] confirm that bestatin interacts with both metal ions. The X-ray crystal structure of the [ZnZn(AAP)]-bestatin complex was solved to 2.0 A resolution. Both side chains of bestatin occupy a well-defined hydrophobic pocket that is adjacent to the dinuclear Zn(II) active site. The amino acid residues ligated to the dizinc(II) cluster in AAP are identical to those in the native structure with only minor perturbations in bond length. The alkoxide oxygen of bestatin bridges between the two Zn(II) ions in the active site, displacing the bridging water molecule observed in the native [ZnZn(AAP)] structure. The M-M distances observed in the AAP-bestatin complex and native AAP are identical (3.5 A) with alkoxide oxygen atom distances of 2.1 and 1.9 A from Zn1 and Zn2, respectively. Interestingly, the backbone carbonyl oxygen atom of bestatin is coordinated to Znl at a distance of 2.3 A. In addition, the NH(2) group of bestatin, which mimics the N-terminal amine group of an incoming peptide, binds to Zn2 with a bond distance of 2.3 A. A combination of the spectroscopic and X-ray crystallographic data presented herein with the previously reported mechanistic data for AAP has provided additional insight into the substrate-binding step of peptide hydrolysis as well as insight into important small molecule features for inhibitor design.


Assuntos
Aeromonas/química , Aminopeptidases/química , Proteínas de Bactérias/química , Leucina/análogos & derivados , Leucina/química , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Hidrólise , Leucina/metabolismo , Ligação Proteica , Espectrofotometria Atômica , Espectrofotometria Ultravioleta , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...