Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38920923

RESUMO

The therapeutic effects of curcumin and its derivatives, based on research in recent years, are limited by their low bioavailability. To improve bioavailability and develop the medical field of application, different delivery systems have been developed that are adapted to certain environments or the proposed target type. This study presents some half-curcuminoids prepared by the condensation of acetylacetone with 4-hydroxybenzaldehyde (C1), 4-hydroxy-3-methoxybenzaldehyde (C2), 4-acetamidobenzaldehyde (C3), or 4-diethylaminobenzaldehyde (C4), at microwaves as a simple, solvent-free, and eco-friendly method. The four compounds obtained were characterized in terms of morphostructural and photophysical properties. Following the predictions of theoretical studies on the biological activities related to the molecular structure, in vitro tests were performed for compounds C1-C3 to evaluate the antitumor properties and for C4's possible applications in the treatment of neurological diseases. The four compounds were encapsulated in two types of hydrogel matrices. First, the alginate-glucosamine network was generated and then the curcumin analogs were loaded (G1, G3, G5-G7, and G9). The second type of hydrogels was obtained by loading the active compound together with the generation of the hydrogel carrier matrices, by simply dissolving (G4 and G10) or by chemically binding half-curcuminoid derivatives to glucosamine (G2 and G8). Thus, two types of curcumin analog delivery systems were obtained, which could be applied in various types of medical treatments.

2.
J Funct Biomater ; 15(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921521

RESUMO

Computer-aided design and computer-aided manufacturing (CAD/CAM) techniques are based on either subtractive (milling prefabricated blocks) or additive (3D printing) methods, and both are used for obtaining dentistry materials. Our in vitro study aimed to investigate the behavior of human gingival fibroblasts exposed to methacrylate (MA)-based CAD/CAM milled samples in comparison with that of MA-based 3D-printed samples to better elucidate the mechanisms of cell adaptability and survival. The proliferation of human gingival fibroblasts was measured after 2 and 24 h of incubation in the presence of these samples using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the membrane integrity was assessed through the lactate dehydrogenase release. The level of reactive oxygen species, expression of autophagy-related protein LC3B-I, and detection of GSH and caspase 3/7 were evaluated by fluorescence staining. The MMP-2 levels were measured using a Milliplex MAP kit. The incubation with MA-based 3D-printed samples significantly reduced the viability, by 16% and 28% from control after 2 and 24 h, respectively. There was a 25% and 55% decrease in the GSH level from control after 24 h of incubation with the CAD/CAM milled and 3D-printed samples, respectively. In addition, higher levels of LC3B-I and MMP-2 were obtained after 24 h of incubation with the MA-based 3D samples compared to the CAD/CAM milled ones. Therefore, our results outline that the MA-CAD/CAM milled samples displayed good biocompatibility during 24-h exposure, while MA-3D resins are proper for short-term utilization (less than 24 h).

3.
Materials (Basel) ; 17(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894040

RESUMO

Silicon-based quantum dots (SiQDs) represent a special class of nanoparticles due to their low toxicity and easily modifiable surface properties. For this reason, they are used in applications such as bioimaging, fluorescent labeling, drug delivery, protein detection techniques, and tissue engineering despite a serious lack of information on possible in vivo effects. The present study aimed to characterize and evaluate the in vivo toxicity of SiQDs obtained by laser ablation in the lung and spleen of mice. The particles were administered in three different doses (1, 10, and 100 mg QDs/kg of body weight) by intravenous injection into the caudal vein of Swiss mice. After 1, 6, 24, and 72 h, the animals were euthanized, and the lung and spleen tissues were harvested for the evaluation of antioxidant enzyme activity, lipid peroxidation, protein expression, and epigenetic and morphological changes. The obtained results highlighted a low toxicity in pulmonary and splenic tissues for concentrations up to 10 mg SiQDs/kg body, demonstrated by biochemical and histopathological analysis. Therefore, our study brings new experimental evidence on the biocompatibility of this type of QD, suggesting the possibility of expanding research on the biomedical applications of SiQDs.

4.
Polymers (Basel) ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891458

RESUMO

A challenge in tissue engineering and the pharmaceutical sector is the development of controlled local release of drugs that raise issues when systemic administration is applied. Strontium is an example of an effective anti-osteoporotic agent, used in treating osteoporosis due to both anti-resorptive and anabolic mechanisms of action. Designing bone scaffolds with a higher capability of promoting bone regeneration is a topical research subject. In this study, we developed composite multi-layer three-dimensional (3D) scaffolds for bone tissue engineering based on nano-hydroxyapatite (HA), Sr-containing nano-hydroxyapatite (SrHA), and poly-ε-caprolactone (PCL) through the material extrusion fabrication technique. Previously obtained HA and SrHA with various Sr content were used for the composite material. The chemical, morphological, and biocompatibility properties of the 3D-printed scaffolds obtained using HA/SrHA and PCL were investigated. The 3D composite scaffolds showed good cytocompatibility and osteogenic potential, which is specifically recommended in applications when faster mineralization is needed, such as osteoporosis treatment.

5.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794562

RESUMO

Nosocomial infections represent a major threat within healthcare systems worldwide, underscoring the critical need for materials with antimicrobial properties. This study presents the development of polyurethane foam embedded with silver nanoparticles (PUF/AgNPs) using a rapid, eco-friendly, in situ radiochemical synthesis method. The nanocomposites were characterized by UV-vis and FTIR spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray technique (SEM/EDX), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile and compression strengths, antimicrobial activity, and foam toxicity tests. The resulting PUF/AgNPs demonstrated prolonged stability (over 12 months) and good dispersion of AgNPs. Also, the samples presented higher levels of hardness compared to samples without AgNPs (deformation of 1682 µm for V1 vs. 4307 µm for V0, under a 5 N force), tensile and compression strength of 1.80 MPa and 0.34 Mpa, respectively. Importantly, they exhibited potent antimicrobial activity against a broad range of bacteria (including Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis) and a fungal mixture (no fungal growth on the sample surface was observed after 28 days of exposure). Furthermore, these materials were non-toxic to human keratinocytes, which kept their specific morphology after 24 h of incubation, highlighting their potential for safe use in biomedical applications. We envision promising applications for PUF/AgNPs in hospital bed mattresses and antimicrobial mats, offering a practical strategy to reduce nosocomial infections and enhance patient safety within healthcare facilities.

6.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675368

RESUMO

Growing resistance to antimicrobials, combined with pathogens that form biofilms, presents significant challenges in healthcare. Modifying current antimicrobial agents is an economical approach to developing novel molecules that could exhibit biological activity. Thus, five sulfanilamide Schiff bases were synthesized under microwave irradiation and characterized spectroscopically and in silico. They were evaluated for their antimicrobial and antibiofilm activities against both Gram-positive and Gram-negative bacterial strains. Their cytotoxic potential against two cancer cell lines was also determined. Gram-positive bacteria were susceptible to the action of these compounds. Derivatives 1b and 1d inhibited S. aureus's growth (MIC from 0.014 mg/mL) and biofilm (IC from 0.029 mg/mL), while compound 1e was active against E. faecalis's planktonic and sessile forms. Two compounds significantly reduced cell viability at 5 µg/mL after 24 h of exposure (1d-HT-29 colorectal adenocarcinoma cells, 1c-LN229 glioblastoma cells). A docking study revealed the increased binding affinities of these derivatives compared to sulfanilamide. Hence, these Schiff bases exhibited higher activity compared to their parent drug, with halogen groups playing a crucial role in both their antimicrobial and cytotoxic effects.

7.
Materials (Basel) ; 17(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611986

RESUMO

Development of efficient controlled local release of drugs that prevent systemic side effects is a challenge for anti-osteoporotic treatments. Research for new bone-regeneration materials is of high importance. Strontium (Sr) is known as an anti-resorptive and anabolic agent useful in treating osteoporosis. In this study, we compared two different types of synthesis used for obtaining nano hydroxyapatite (HA) and Sr-containing nano hydroxyapatite (SrHA) for bone tissue engineering. Synthesis of HA and SrHA was performed using co-precipitation and hydrothermal methods. Regardless of the synthesis route for the SrHA, the intended content of Sr was 1, 5, 10, 20, and 30 molar %. The chemical, morphological, and biocompatibility properties of HA and SrHA were investigated. Based on our results, it was shown that HA and SrHA exhibited low cytotoxicity and demonstrated toxic behavior only at higher Sr concentrations.

8.
Nanomaterials (Basel) ; 14(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470787

RESUMO

In the last decade, silicon-based quantum dots (SiQDs) have attracted the attention of researchers due to their unique properties for which they are used in medical applications and in vivo imaging. Detection of cytotoxic effects in vivo is essential for understanding the mechanisms of toxicity, a mandatory step before their administration to human subjects. In this context, we aimed to evaluate the in vivo hepatic and renal acute toxicity of SiQDs obtained by laser ablation. The nanoparticles were administrated at different doses (0, 1, 10, and 100 mg of QDs/kg of body weight) by intravenous injection into the caudal vein of Swiss mice. After 1, 6, 24, and 72 h, the animals were euthanatized, and liver and kidney tissues were used in further toxicity tests. The time- and dose-dependent effects of SiQDs on the antioxidant defense system of mice liver and kidney were investigated by quantifying the activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) in correlation with the morphological changes and inflammatory status in the liver and kidneys. The results showed a decrease in the activities of antioxidant enzymes and histopathological changes, except for superoxide dismutase, in which no significant changes were registered compared with the control. Furthermore, the immunohistochemical expression of TNF-α was significant at doses over 10 mg of QDs/kg of body weight and were still evident at 72 h after administration. Our results showed that doses under 10 mg of SiQDs/kg of b.w. did not induce hepatic and renal toxicity, providing useful information for further clinical trials.

9.
Heliyon ; 10(4): e26047, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384565

RESUMO

Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO3 (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against Pseudomonas aeruginosa and Escherichia coli strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.

10.
Pharmaceutics ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399259

RESUMO

Curcumin is a polyphenol of the Curcuma longa plant, which can be used for various medicinal purposes, such as inflammation and cancer treatment. In this context, two symmetric curcumin derivatives (D1-(1E,6E)-1,7-bis(4-acetamidophenyl)hepta-1,6-diene-3,5-dione and D2-p,p-dihydroxy di-cinnamoyl methane) were obtained by the microwave-based method and evaluated for their antitumoral effect on human cervix cancer in comparison with toxicity on non-tumoral cells, taking into account that they were predicted to act as apoptosis agonists or anti-inflammatory agents. The HeLa cell line was incubated for 24 and 72 h with a concentration of 50 µg/mL of derivatives that killed almost half of the cells compared to the control. In contrast, these compounds did not alter the viability of MRC-5 non-tumoral lung fibroblasts until 72 h of incubation. The nitric oxide level released by HeLa cells was higher compared to MRC-5 fibroblasts after the incubation with 100 µg/mL. Both derivatives induced the decrease of catalase activity and glutathione levels in cancer cells without targeting the same effect in non-tumoral cells. Furthermore, the Western blot showed an increased protein expression of HSP70 and a decreased expression of HSP60 and MCM2 in cells incubated with D2 compared to control cells. We noticed differences regarding the intensity of cell death between the tested derivatives, suggesting that the modified structure after synthesis can modulate their function, the most prominent effect being observed for sample D2. In conclusion, the outcomes of our in vitro study revealed that these microwave-engineered curcumin derivatives targeted tumor cells, much more specifically, inducing their death.

11.
Materials (Basel) ; 17(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255442

RESUMO

Nanoparticles (NPs) are conventionally produced by using physical and chemical methods that are no longer in alignment with current society's demand for a low environmental impact. Accordingly, green synthesis approaches are considered a potential alternative due to the plant extracts that substitute some of the hazardous reagents. The general mechanism is based on the reducing power of natural products that allows the formation of NPs from a precursor solution. In this context, our study proposes a simple, innovative, and reproducible green approach for the synthesis of titanium dioxide (TiO2 NPs) that uses, for the first time, the major component of green tea (Camellia sinensis)-epigallocatechin-3-gallate (EGCG), a non-toxic, dietary, accessible, and bioactive molecule. The influence of EGCG on the formation of TiO2 NPs was analyzed by comparing the physicochemical characteristics of green synthesized NPs with the chemically obtained ones. The synthesis of bare TiO2 NPs was performed by hydrolysis of titanium isopropoxide in distilled water, and green TiO2 NPs were obtained in the same conditions, but in the presence of a 1 mM EGCG aqueous solution. The formation of TiO2 NPs was confirmed by UV-VIS and FTIR spectroscopy. SEM micrographs showed spherical particles with relatively low diameters. Our findings also revealed that green synthesized NPs were more stable in colloids than the chemically synthesized ones. However, the phytocompound negatively influenced the formation of a crystalline structure in the green synthesized TiO2 NPs. Furthermore, the synthesis of EGCG-TiO2 NPs could become a versatile choice for applications extending beyond photocatalysis, including promising prospects in the biomedical field.

12.
Antioxidants (Basel) ; 12(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37507922

RESUMO

Interest in the extraction of phytochemical bioactive compounds, especially polyphenols from biomass, has recently increased due to their valuable biological potential as natural sources of antioxidants, which could be used in a wide range of applications, from foods and pharmaceuticals to green polymers and bio-based materials. The present research study aimed to provide a comprehensive chemical characterization of the phytochemical composition of forest biomass (bark and needles) of softwood species (Picea abies L., H. Karst., and Abies alba Mill.) and to investigate their in vitro antioxidant and antimicrobial activities to assess their potential in treating and healing infected chronic wounds. The DPPH radical-scavenging method and P-LD were used for a mechanistic explanation of the biomolecular effects of the investigated bioactive compounds. (+)-Catechin, epicatechin, rutin, myricetin, 4 hydroxybenzoic and p-cumaric acids, kaempherol, and apigenin were the main quantified polyphenols in coniferous biomass (in quantities around 100 µg/g). Also, numerous phenolic acids, flavonoids, stilbenes, terpenes, lignans, secoiridoids, and indanes with antioxidant, antimicrobial, anti-inflammatory, antihemolytic, and anti-carcinogenic potential were identified. The Abies alba needle extract was more toxic to microbial strains than the eukaryotic cells that provide its active wound healing principles. In this context, developing industrial upscaling strategies is imperative for the long-term success of biorefineries and incorporating them as part of a circular bio-economy.

13.
J Funct Biomater ; 14(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504872

RESUMO

Orthopedic bone graft infections are major complications in today's medicine, and the demand for antibacterial treatments is expanding because of the spread of antibiotic resistance. Various compositions of hydroxyapatite (HAp) in which Calcium (Ca2+) ions are substituted with Cerium (Ce3+) and Magnesium (Mg2+) are herein proposed as biomaterials for hard tissue implants. This approach gained popularity in recent years and, in the pursuit of mimicking the natural bone mineral's composition, over 70 elements of the Periodic Table were already reported as substituents into HAp structure. The current study aimed to create materials based on HAp, Hap-Ce, and Hap-Mg using hydrothermal maturation in the microwave field. This route has been considered a novel, promising, and effective way to obtain monodisperse, fine nanoparticles while easily controlling the synthesis parameters. The synthesized HAp powders were characterized morphologically and structurally by XRD diffraction, Dynamic light scattering, zeta potential, FTIR spectrometry, and SEM analysis. Proliferation and morphological analysis on osteoblast cell cultures were used to demonstrate the cytocompatibility of the produced biomaterials. The antimicrobial effect was highlighted in the synthesized samples, especially for hydroxyapatite substituted with cerium. Therefore, the samples of HAp substituted with cerium or magnesium are proposed as biomaterials with enhanced osseointegration, also having the capacity to reduce device-associated infections.

14.
Front Med (Lausanne) ; 10: 1197846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415761

RESUMO

Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged ß- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.

15.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511219

RESUMO

The recognized antimicrobial activity of silver nanoparticles is a well-studied property, especially when designing and developing biomaterials with medical applications. As biological activity is closely related to the physicochemical characteristics of a material, aspects such as particle morphology and dimension should be considered. Microfluidic systems in continuous flow represent a promising method to control the size, shape, and size distribution of synthesized nanoparticles. Moreover, using microfluidics widens the synthesis options by creating and controlling parameters that are otherwise difficult to maintain in conventional batch procedures. This study used a microfluidic platform with a cross-shape design as an innovative method for synthesizing silver nanoparticles and varied the precursor concentration and the purging speed as experimental parameters. The compositional and microstructural characterization of the obtained samples was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Four formulations of alginate-based hydrogels with the addition of hyaluronic acid and silver nanoparticles were obtained to highlight the antimicrobial activity of silver nanoparticles and the efficiency of such a composite in wound treatment. The porous structure, swelling capacity, and biological properties were evaluated through physicochemical analysis (FT-IR and SEM) and through contact with prokaryotic and eukaryotic cells. The results of the physicochemical and biological investigations revealed desirable characteristics for performant wound dressings (i.e., biocompatibility, appropriate porous structure, swelling rate, and degradation rate, ability to inhibit biofilm formation, and cell growth stimulation capacity), and the obtained materials are thus recommended for treating chronic and infected wounds.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Ácido Hialurônico/química , Prata/farmacologia , Prata/química , Microfluídica , Espectroscopia de Infravermelho com Transformada de Fourier , Alginatos/química , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Bandagens , Antibacterianos/farmacologia , Antibacterianos/química
16.
Sci Total Environ ; 884: 163810, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127150

RESUMO

In the last decades, increased intakes of contaminants and the habitats' destruction have produced drastic changes in the aquatic ecosystems. The environmental contaminants can accumulate in aquatic organisms, leading to the disturbance of the antioxidant/prooxidant balance in fish. In this context, we evaluated the level of organic, inorganic and microbiological pollutants in four leisure lakes (Chitila, Floreasca, Tei and Vacaresti) from Bucharest, the largest city of Romania, in order to compare their effects on hepatopancreas and gills metabolism and antioxidant defense mechanisms in Carassius gibelio, the most known and widespread freshwater fish in this country. The lowest level of oxidative stress was recorded in the case of fish collected from the Vacaresti lake, a protected wetland area where aquatic organisms live in wild environmental conditions. In contrast, significant oxidative changes were observed in the hepatopancreas and gills of fish from the Chitila, Floreasca and Tei lakes, such as reduced glutathione S-transferase activity and glutathione level, and increased degree of lipid peroxidation, being correlated with elevated levels of pesticides (such as 2,4'-methoxychlor) and Escherichia coli load in these organs. Although different patterns of pollutants' accumulation were observed, no important interindividual variations in cytosine methylation degree were determined. In conclusion, the presence and concentrations of metals, pesticides and antibiotics varied with the analyzed tissue and sampling site, and were correlated with changes in the cellular redox homeostasis, but without significantly affecting the epigenetic mechanisms.


Assuntos
Cyprinidae , Microbiota , Praguicidas , Poluentes Químicos da Água , Animais , Lagos , Antioxidantes/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Cyprinidae/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Praguicidas/metabolismo , Brânquias/metabolismo
17.
Pharmaceutics ; 15(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242698

RESUMO

A new series of nanostructured materials was obtained by functionalization of SBA-15 mesoporous silica with Ru(II) and Ru(III) complexes bearing Schiff base ligands derived from salicylaldehyde and various amines (1,2-diaminocyclohexane, 1,2-phenylenediamine, ethylenediamine, 1,3-diamino-2-propanol, N,N-dimethylethylenediamine, 2-aminomethyl-pyridine, and 2-(2-aminoethyl)-pyridine). The incorporation of ruthenium complexes into the porous structure of SBA-15 and the structural, morphological, and textural features of the resulting nanostructured materials were investigated by FTIR, XPS, TG/DTA, zeta potential, SEM, and N2 physisorption. The ruthenium complex-loaded SBA-15 silica samples were tested against A549 lung tumor cells and MRC-5 normal lung fibroblasts. A dose-dependent effect was observed, with the highest antitumoral efficiency being recorded for the material containing [Ru(Salen)(PPh3)Cl] (50%/90% decrease in the A549 cells' viability at a concentration of 70 µg/mL/200 µg/mL after 24 h incubation). The other hybrid materials have also shown good cytotoxicity against cancer cells, depending on the ligand included in the ruthenium complex. The antibacterial assay revealed an inhibitory effect for all samples, the most active being those containing [Ru(Salen)(PPh3)Cl], [Ru(Saldiam)(PPh3)Cl], and [Ru(Salaepy)(PPh3)Cl], especially against Staphylococcus aureus and Enterococcus faecalis Gram-positive strains. In conclusion, these nanostructured hybrid materials could represent valuable tools for the development of multi-pharmacologically active compounds with antiproliferative, antibacterial, and antibiofilm activity.

18.
Biotechniques ; 74(2): 85-99, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36691899

RESUMO

Efficient cloning techniques are a requirement for synthetic biology. This study provides a simplified cloning method based on Golden Gate Assembly that can be used for rapid vector construction. The building of multiple expression vectors with customizable modules is achieved in a timely manner with minimal hands-on time by removing unnecessary steps in the workflow. The authors constructed a total of 21 mammalian episomal expression vectors and conducted a fluorescence expression comparison for different regulatory region combinations post-transfection in HEK293T and HEPG2 cells. Screening revealed that using the EF-1α promoter in combination with the bovine growth hormone polyadenylation sequence seemed to perform best in the types of cells tested compared with other variants.


Assuntos
Vetores Genéticos , Biologia Sintética , Humanos , Animais , Bovinos , Clonagem Molecular , Vetores Genéticos/genética , Células HEK293 , Plasmídeos , Regiões Promotoras Genéticas/genética , Biologia Sintética/métodos , Mamíferos
19.
Polymers (Basel) ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38231979

RESUMO

With the technological developments witnessed in recent decades, nanotechnology and nanomaterials have found uses in several common applications and products we encounter daily. On the other hand, polyurethane (PU) foams represent an extremely versatile material, being widely recognized for their extensive application possibilities and possessing a multitude of fundamental attributes that enhance their broad usability across various application fields. By combining the versatility of PU with the antimicrobial properties of nanoparticles, this emerging field holds promise for addressing the urgent need for effective antimicrobial materials in various applications. In this comprehensive review, we explore the synthesis methods, properties and applications of these nanocomposite materials, shedding light on their potential role in safeguarding public health and environmental sustainability. The main focus is on PU foams containing metal and metal oxide nanoparticles, but a brief presentation of the progress documented in the last few years regarding other antimicrobial nanomaterials incorporated into such foams is also given within this review in order to obtain a larger image of the possibilities to develop improved PU foams.

20.
Life (Basel) ; 12(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36556479

RESUMO

Bacterial virulence factors are mediating bacterial pathogenesis and infectivity. Collagenases are virulence factors secreted by several bacterial stains, such as Clostridium, Bacillus, Vibrio and Pseudomonas. These enzymes are among the most efficient degraders of collagen, playing a crucial role in host colonization. Thus, they are an important target for developing new anti-infective agents because of their pivotal roles in the infection process. A primary screening using a fluorescence resonance energy-transfer assay was used to experimentally evaluate the inhibitory activity of 77 compounds on collagenase A. Based on their inhibitory activity and chemical diversity, a small number of compounds was selected to determine the corresponding half maximal inhibitory con-centration (IC50). Additionally, we used molecular docking to get a better understanding of the enzyme-compound interaction. Several natural compounds (capsaicin, 4',5-dihydroxyflavone, curcumin, dihydrorobinetin, palmatine chloride, biochanin A, 2'-hydroxychalcone, and juglone) were identified as promising candidates for further development into useful anti-infective agents against infections caused by multi-drug-resistant bacterial pathogens which include collagenase A in their enzymatic set.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...