Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 15(1): 177-187, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33606634

RESUMO

Size and absolute concentration of suspensions of nanoparticles are important information for the study and development of new materials and products in different industrial applications spanning from biotechnology and pharmaceutics to food preparation and conservation. Laser Transmission Spectroscopy (LTS) is the only methodology able to measure nanoparticle size and concentration by performing a single measurement. In this paper we report on a new variable gain calibration procedure for LTS-based instruments allowing to decrease of an order of magnitude the experimental indetermination of the particle size respect to the conventional LTS based on the double ratio technique. The variable gain calibration procedure makes use of a specifically designed tunable-gain, dual-channel, dual-phase Lock-In Amplifier (LIA) whose input voltage signals are those ones generated by two Si photodiodes that measure the laser beam intensities passing through the sample containing the nanoparticles and a reference optical path. The LTS variable gain calibration procedure has been validated by firstly using a suspension of NIST standard polystyrene nanoparticles even 36 hours after the calibration procedure was accomplished. The paper reports in detail the LIA implementation describing the design methodologies and the electronic circuits. As a case example of the characterization of biological nanostructures, we demonstrate that a single LTS measurement allowed to determine size density distribution of a population of extracellular vesicles extracted from orange juice (25 nm in size) with the presence of their aggregates having a size of 340 nm and a concentration smaller than 3 orders of magnitude.


Assuntos
Amplificadores Eletrônicos , Nanopartículas , Lasers , Tamanho da Partícula , Análise Espectral
2.
IEEE Trans Biomed Circuits Syst ; 14(3): 441-451, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32054584

RESUMO

This article reports an implantable transcutaneous telemetry for a brain machine interface that uses a novel optical communication system to achieve a highly energy-efficient link. Based on an pulse-based coding scheme, the system uses sub-nanosecond laser pulses to achieve data rates up to 300 Mbps with relatively low power levels when compared to other methods of wireless communication. This has been implemented using a combination of discrete components (semiconductor laser and driver, fast-response Si photodiode and interface) integrated at board level together with reconfigurable logic (encoder, decoder and processing circuits implemented using Xilinx KCU105 board with Kintex UltraScale FPGA). Experimental validation has been performed using a tissue sample that achieves representative level of attenuation/scattering (porcine skin) in the optical path. Results reveal that the system can operate at data rates up to 300 Mbps with a bit error rate (BER) of less than 10 -10, and an energy efficiency of 37 pJ/bit. This can communicate, for example, 1,024 channels of broadband neural data sampled at 18 kHz, 16-bit with only 11 mW power consumption.


Assuntos
Óptica e Fotônica/instrumentação , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Interfaces Cérebro-Computador , Desenho de Equipamento , Humanos , Próteses e Implantes , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA