Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499736

RESUMO

Cardiorenal syndrome (CRS) denotes the bidirectional interaction of chronic kidney disease and heart failure with an adverse prognosis but with a limited understanding of its pathogenesis. This study correlates biochemical blood markers, histopathological and immunohistochemistry features, and 2-deoxy-2-fluoro-D-glucose positron emission tomography (18F-FDG PET) metabolic data in low-dose doxorubicin-induced heart failure, cardiorenal syndrome, and renocardiac syndrome induced on Wistar male rats. To our knowledge, this is the first study that investigates the underlying mechanisms for CRS progression in rats using 18F-FDG PET. Clinical, metabolic cage monitoring, biochemistry, histopathology, and immunohistochemistry combined with PET/MRI (magnetic resonance imaging) data acquisition at distinct points in the disease progression were employed for this study in order to elucidate the available evidence of organ crosstalk between the heart and kidneys. In our CRS model, we found that chronic treatment with low-dose doxorubicin followed by acute 5/6 nephrectomy incurred the highest mortality among the study groups, while the model for renocardiac syndrome resulted in moderate-to-high mortality. 18F-FDG PET imaging evidenced the doxorubicin cardiotoxicity with vascular alterations, normal kidney development damage, and impaired function. Given the fact that standard clinical markers were insensitive to early renal injury, we believe that the decreasing values of the 18F-FDG PET-derived renal marker across the groups and, compared with their age-matched controls, along with the uniform distribution seen in healthy developing rats, could have a potential diagnostic and prognostic yield in cardiorenal syndrome.


Assuntos
Síndrome Cardiorrenal , Insuficiência Cardíaca , Animais , Masculino , Ratos , Síndrome Cardiorrenal/diagnóstico por imagem , Ratos Wistar , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Doxorrubicina
2.
Pharmaceutics ; 13(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834397

RESUMO

BACKGROUND: Theranostics, a novel concept in medicine, is based on the use of an agent for simultaneous diagnosis and treatment. Nanomaterials provide promising novel approaches to theranostics. Carbon Dots have been shown to exhibit anti-tumoral properties in various cancer models. The aim of the present study is to develop gadolinium, Fe3+, and Mn2+-doped N-hydroxyphthalimide-derived Carbon Dots. The resulted doped Carbon Dots should preserve the anti-tumoral properties while gaining magnetic resonance imaging properties. METHODS: Normal and cancer cell lines have been treated with doped Carbon Dots, and the cell viability has been measured. The doped Carbon Dots that exhibited the most prominent anti-tumoral effect accompanied by the lowest toxicity have been further in vivo tested. Magnetic resonance imaging evaluates both in vitro and in vivo the possibility of using doped Carbon Dots as a contrast agent. RESULTS: According to the results obtained from both the in vitro and in vivo experimental models used in our study, Mn2+-doped Carbon Dots (Mn-CDs-NHF) exhibit anti-tumoral properties, do not significantly impair the cell viability of normal cells, and reduce lung metastasis and the volume of mammary primary tumors while allowing magnetic resonance imaging. CONCLUSIONS: Our findings prove that Mn-CDs-NHF can be used as theranostics agents in pre-clinical models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...