Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 114(1): 201-8, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19957990

RESUMO

Cavity ring-down spectroscopy (CRDS) is used to measure the number density of N2(A3Sigmau+) metastables produced by nanosecond repetitively pulsed discharges in nitrogen and air preheated at 1000 K and atmospheric pressure. The densities of N2(A) are inferred from the absorbance of the Q1(22) and Q3(16) lines of the (2 <-- 0) vibrational band of the first positive system (B3Pig - A3Sigmau+) of N2 at 769.945 nm. The procedure for determining the temporal evolution of the density of metastable from the measured ring down signals is presented. The maximum number densities are in the range of 10(14)-10(15) molecules cm-3 for air and nitrogen discharges, respectively. In nitrogen, the decay of the N2(A) density is shown to be a second-order process with a rate coefficient of 1.1 x 10(-9) cm3 s-1 at 1600 K with a factor of 2 uncertainty. In air, the decay is estimated to be 1 order of magnitude faster than that in nitrogen owing to quenching by atomic and molecular oxygen. Furthermore, the rotational temperature is determined by comparison of CRDS measurements and simulations of several rotational lines of the (2 <-- 0) band of the first positive system of N2 between 769.8 and 770.7 nm. The rotational and vibrational temperatures are also determined by comparison of optical emission measurements and simulations of the second positive system of N2 between 365 and 385 nm. In these CRDS measurements, we achieved a temporal resolution down to 50 ns.

2.
J Phys Chem A ; 112(28): 6285-8, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18572894

RESUMO

The line strengths of five Q-branch lines of the first hot band of the out-of-plane bending vibration (2(1)(2)) of the methyl radical, CH 3, have been measured using infrared laser absorption spectroscopy. The spectra of the radical were measured in situ in a microwave discharge using ditertiary butyl peroxide, diluted in argon as the precursor. The line strengths were used to determine the transition dipole moment of the hot band. Absolute concentrations of the radical were required for this purpose, and these were determined kinetically from the measured decays of the spectral lines after the discharge was extinguished. The translational, rotational, and vibrational temperatures were also determined spectroscopically from measured integrated line intensities and line widths. The transition dipole moment of the first hot band was determined to be 0.31(6) D. This value is in satisfactory agreement with the value of 0.27(3) D from a high-precision ab initio calculation using the self-consistent electron pairs (SCEP) method reported by Botschwina, Flesch, and Meyer [Botschwina, P.; Flesch, J.; Meyer, W. Chem. Phys. 1983, 74, 321].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...