Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(15): 22524-22539, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752512

RESUMO

We report a thorough study of InGaN quantum wells spatially modified by varying the local misorientation of the GaN substrate prior to the epitaxial growth of the structure. More than 25 nm shift of emission wavelength was obtained, which is attributed to indium content changes in the quantum wells. Such an active region is promising for broadening of the emission spectrum of (In,Al,Ga)N superluminescent diodes. We observed that the light intensity changes with misorientation, being stable around 0.5° to 2° and decreasing above 2°. This relation can be used as a base for future device designing.

2.
Opt Express ; 27(4): 5784-5791, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876173

RESUMO

We demonstrate a stack of two III-nitride laser diodes (LDs) interconnected by a tunnel junction grown by plasma-assisted molecular beam epitaxy. Hydrogen-free growth is used to obtain as-grown p-type conductivity essential for buried tunnel junctions (TJ). We show the impact of the design of tunnel junction. In particular, we show that, apart from the beneficial piezoelectric polarization inside the TJ, heavy doping reduces the differential resistivity even further. The device starts to lase at a wavelength of 459 nm with a slope efficiency (SE) of 0.7 W/A followed by lasing at 456 nm from the second active region doubling the total SE to 1.4 W/A. This demonstration opens new possibilities for the fabrication of stacks of ultraviolet and visible high power pulsed III-nitride LD.

3.
Opt Express ; 24(9): 9673-82, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137581

RESUMO

We demonstrate InGaN/GaN superluminescent diodes with broadened emission spectra fabricated on surface-shaped bulk GaN (0001) substrates. The patterning changes the local vicinal angle linearly along the device waveguide, which results in an indium incorporation profile in InGaN quantum wells. The structure was investigated by microphotoluminescence mapping, showing a shift of central emission wavelength from 413 nm to 430 nm. Spectral full width at half maximum of processed superluminescent diodes is equal to 6.1 nm, while the reference chips show 3.4 nm. This approach may open the path for using nitride devices in applications requiring broad emission spectrum and high beam quality, such as optical coherence tomography.

4.
Biochemistry ; 31(28): 6396-401, 1992 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-1633152

RESUMO

The conformations of wild-type staphylococcal nuclease (SNase) in the ternary complexes with thymidine 3',5'-bisphosphate (pdTp), 2'-deoxyguanine 3',5'-bisphosphate (pdGp), and thymidine 3'-phosphate 5'-(p-nitrophenylphosphate) (NpdTp) with Ca2+ were examined by two-dimensional NMR NOESY and ROESY experiments. The results of these experiments indicate that the conformational features of the SNase are quite similar in the three ternary complexes. This suggests that the conformational features of SNase, in these ternary complexes, are not strongly dependent on whether the 5'-phosphate is a mono- or diester. This is in contrast to our prior studies on substitutions of active site charged amino acids which indicated that the conformational features of SNase in the ternary complex are quite sensitive to substitutions for active site charged amino acids (Hibler et al., 1987; Wilde et al., 1988; Pourmotabbed et al., 1990). The similarity of the SNase conformational features in the ternary complexes with pdTp and pdGp indicates that the features of the nucleotide bound at the active site are not strong determinants of the enzyme conformation in the ternary complexes. These conclusions are in general agreement with the results on pdApdT ternary complexes with SNase which suggested that it is the conformational features of the bound nucleic acid which determine the differences in catalysis observed for SNase with different substrates (Weber et al., 1991), more so than the conformational features of the enzyme.


Assuntos
Desoxirribonucleotídeos/metabolismo , Nuclease do Micrococo/ultraestrutura , Sequência de Aminoácidos , Cristalografia , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Nuclease do Micrococo/metabolismo , Dados de Sequência Molecular , Nitrobenzenos
5.
Biochemistry ; 30(15): 3621-7, 1991 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-2015219

RESUMO

The high-resolution X-ray structure of wild-type staphylococcal nuclease (E43 SNase) suggests that Glu 43 acts a general basic catalyst to assist the attack of water on a phosphodiester substrate [Loll, P., & Lattman, E. E. (1989) Proteins: Struct., Funct., Genet. 5, 183]. Glu 43 is located at the base of the solvent-exposed and conformationally mobile omega-loop in the active site of E43 SNase having the sequence Glu43-Thr44-Lys45-His46-Pro47-Lys48- Lys49-Gly50-Val51-Glu52, where the gamma-carboxylate of Glu 52 is hydrogen bonded to the amide hydrogen of Glu 43. With a metabolic selection for SNase activity produced in an Escherichia coli host, we detected an unexpected deletion of residues 44-49 of the omega-loop of E43 SNase in cassette mutagenesis experiments designed to randomize codons 44 and 45 in the omega-loop and increase the activity of the previously described E43D mutation (D43 SNase). A high-resolution X-ray structure of D43 SNase has revealed that the E43D substitution significantly changes the structure of the omega-loop, reduces the interaction of the essential Ca2+ ion with its active-site ligands, and diminishes the network of hydrogen-bonded water molecules in the active site [Loll, P., & Lattman, E. E. (1990) Biochemistry 29, 6866]. This deletion of six amino acids from the omega-loop generates a protein (E43 delta SNase) having a partially solvent-exposed, surface beta-turn with the sequence Glu43-Gly50-Val51-Glu52; the structure of this beta-turn is addressed in the following article [Baldisseri et al. (1991) Biochemistry (following paper in this issue)].(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Nuclease do Micrococo/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cálcio/metabolismo , Catálise , Estabilidade Enzimática , Ligação de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Nuclease do Micrococo/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Difração de Raios X
6.
Biochemistry ; 29(15): 3677-83, 1990 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-2111164

RESUMO

The high-resolution X-ray crystal structure of staphylococcal nuclease (SNase) suggests that the guanidinium groups of Arg 35 and Arg 87 participate as electrophilic catalysts in the attack of water on the substrate phosphodiester. Both arginine residues have been replaced with "conservative" lysine residues so that both the importance of these residues in catalysis and the effect of changes in electrostatic interactions on active site conformation can be assessed. The catalytic efficiencies of R35K and R87K are decreased by factors of 10(4) and 10(5) relative to wild-type SNase, with R87K showing a very significant reduction in its affinity for both DNA substrate and the competitive inhibitor thymidine 3',5'-bisphosphate (pdTp). The thermal denaturation behavior of both mutant enzymes differs from that of wild type both in the absence and in the presence of the active site ligands Ca2+ and pdTp. Both the 1H NMR chemical shifts and interresidue nuclear Overhauser effects (NOEs) of residues previously assigned to be in the hydrophobic core of SNase are altered in R35K and R87K. These observations, similar to those recently reported by our laboratories for substitutions for Glu 43 [Hibler, D. W., Stolowich, N. J., Reynolds, M. A., Gerlt, J. A., Wilde, J. A., & Bolton, P. H. (1987) Biochemistry 26, 6278; Wilde, J. A., Bolton, P. H., Dell'Acqua, M., Hibler, D. W., Pourmotabbed, T., & Gerlt, J. A. (1988) Biochemistry 27, 4127], suggest that lysine substitutions are not conservative in SNase and disrupt the conformation of the active site.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Arginina/genética , Lisina/genética , Nuclease do Micrococo/genética , Sítios de Ligação , Cálcio/farmacologia , Catálise , Escherichia coli/genética , Temperatura Alta , Cinética , Espectroscopia de Ressonância Magnética , Mutação , Conformação Proteica , Desnaturação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...