Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(8): 4761-4778, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36245212

RESUMO

Humans vary greatly in their motor learning abilities, yet little is known about the neural processes that underlie this variability. We identified distinct profiles of human sensorimotor adaptation that emerged across 2 days of learning, linking these profiles to the dynamics of whole-brain functional networks early on the first day when cognitive strategies toward sensorimotor adaptation are believed to be most prominent. During early learning, greater recruitment of a network of higher-order brain regions, involving prefrontal and anterior temporal cortex, was associated with faster learning. At the same time, greater integration of this "cognitive network" with a sensorimotor network was associated with slower learning, consistent with the notion that cognitive strategies toward adaptation operate in parallel with implicit learning processes of the sensorimotor system. On the second day, greater recruitment of a network that included the hippocampus was associated with faster learning, consistent with the notion that declarative memory systems are involved with fast relearning of sensorimotor mappings. Together, these findings provide novel evidence for the role of higher-order brain systems in driving variability in adaptation.


Assuntos
Encéfalo , Aprendizagem , Humanos , Adaptação Fisiológica , Lobo Temporal , Hipocampo
2.
Proc Natl Acad Sci U S A ; 119(52): e2209960119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36538479

RESUMO

Sensorimotor learning is a dynamic, systems-level process that involves the combined action of multiple neural systems distributed across the brain. Although much is known about the specialized cortical systems that support specific components of action (such as reaching), we know less about how cortical systems function in a coordinated manner to facilitate adaptive behavior. To address this gap, our study measured human brain activity using functional MRI (fMRI) while participants performed a classic sensorimotor adaptation task and used a manifold learning approach to describe how behavioral changes during adaptation relate to changes in the landscape of cortical activity. During early adaptation, areas in the parietal and premotor cortices exhibited significant contraction along the cortical manifold, which was associated with their increased covariance with regions in the higher-order association cortex, including both the default mode and fronto-parietal networks. By contrast, during Late adaptation, when visuomotor errors had been largely reduced, a significant expansion of the visual cortex along the cortical manifold was associated with its reduced covariance with the association cortex and its increased intraconnectivity. Lastly, individuals who learned more rapidly exhibited greater covariance between regions in the sensorimotor and association cortices during early adaptation. These findings are consistent with a view that sensorimotor adaptation depends on changes in the integration and segregation of neural activity across more specialized regions of the unimodal cortex with regions in the association cortex implicated in higher-order processes. More generally, they lend support to an emerging line of evidence implicating regions of the default mode network (DMN) in task-based performance.


Assuntos
Mapeamento Encefálico , Córtex Motor , Humanos , Encéfalo , Córtex Motor/diagnóstico por imagem , Imageamento por Ressonância Magnética , Aprendizagem
3.
J Vis ; 22(8): 1, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816048

RESUMO

Psychophysical, motor control, and modeling studies have revealed that sensorimotor reference frame transformations (RFTs) add variability to transformed signals. For perceptual decision-making, this phenomenon could decrease the fidelity of a decision signal's representation or alternatively improve its processing through stochastic facilitation. We investigated these two hypotheses under various sensorimotor RFT constraints. Participants performed a time-limited, forced-choice motion discrimination task under eight combinations of head roll and/or stimulus rotation while responding either with a saccade or button press. This paradigm, together with the use of a decision model, allowed us to parameterize and correlate perceptual decision behavior with eye-, head-, and shoulder-centered sensory and motor reference frames. Misalignments between sensory and motor reference frames produced systematic changes in reaction time and response accuracy. For some conditions, these changes were consistent with a degradation of motion evidence commensurate with a decrease in stimulus strength in our model framework. Differences in participant performance were explained by a continuum of eye-head-shoulder representations of accumulated motion evidence, with an eye-centered bias during saccades and a shoulder-centered bias during button presses. In addition, we observed evidence for stochastic facilitation during head-rolled conditions (i.e., head roll resulted in faster, more accurate decisions in oblique motion for a given stimulus-response misalignment). We show that perceptual decision-making and stochastic RFTs are inseparable within the present context. We show that by simply rolling one's head, perceptual decision-making is altered in a way that is predicted by stochastic RFTs.


Assuntos
Tomada de Decisões , Movimentos Sacádicos , Tomada de Decisões/fisiologia , Humanos , Estimulação Luminosa , Tempo de Reação , Rotação
4.
Elife ; 112022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35438633

RESUMO

Humans vary greatly in their motor learning abilities, yet little is known about the neural mechanisms that underlie this variability. Recent neuroimaging and electrophysiological studies demonstrate that large-scale neural dynamics inhabit a low-dimensional subspace or manifold, and that learning is constrained by this intrinsic manifold architecture. Here, we asked, using functional MRI, whether subject-level differences in neural excursion from manifold structure can explain differences in learning across participants. We had subjects perform a sensorimotor adaptation task in the MRI scanner on 2 consecutive days, allowing us to assess their learning performance across days, as well as continuously measure brain activity. We find that the overall neural excursion from manifold activity in both cognitive and sensorimotor brain networks is associated with differences in subjects' patterns of learning and relearning across days. These findings suggest that off-manifold activity provides an index of the relative engagement of different neural systems during learning, and that subject differences in patterns of learning and relearning are related to reconfiguration processes occurring in cognitive and sensorimotor networks.


Assuntos
Adaptação Fisiológica , Aprendizagem , Adaptação Fisiológica/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos
5.
Cereb Cortex ; 30(10): 5229-5241, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32469053

RESUMO

General anesthetics are routinely used to induce unconsciousness, and much is known about their effects on receptor function and single neuron activity. Much less is known about how these local effects are manifest at the whole-brain level nor how they influence network dynamics, especially past the point of induced unconsciousness. Using resting-state functional magnetic resonance imaging (fMRI) with nonhuman primates, we investigated the dose-dependent effects of anesthesia on whole-brain temporal modular structure, following loss of consciousness. We found that higher isoflurane dose was associated with an increase in both the number and isolation of whole-brain modules, as well as an increase in the uncoordinated movement of brain regions between those modules. Conversely, we found that higher dose was associated with a decrease in the cohesive movement of brain regions between modules, as well as a decrease in the proportion of modules in which brain regions participated. Moreover, higher dose was associated with a decrease in the overall integrity of networks derived from the temporal modules, with the exception of a single, sensory-motor network. Together, these findings suggest that anesthesia-induced unconsciousness results from the hierarchical fragmentation of dynamic whole-brain network structure, leading to the discoordination of temporal interactions between cortical modules.


Assuntos
Encéfalo/fisiopatologia , Estado de Consciência/fisiologia , Isoflurano/farmacologia , Inconsciência/fisiopatologia , Animais , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Estado de Consciência/efeitos dos fármacos , Haplorrinos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Descanso/fisiologia , Inconsciência/induzido quimicamente
6.
J Vis ; 19(12): 8, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621817

RESUMO

The storage limitations of visual working memory have been the subject of intense research interest for several decades, but few studies have systematically investigated the dependence of these limitations on memory load that exceeds our retention abilities. Under this real-world scenario, performance typically declines beyond a critical load among low-performing subjects, a phenomenon known as working memory overload. We used a frontoparietal cortical model to test the hypothesis that high-performing subjects select a manageable number of items for storage, thereby avoiding overload. The model accounts for behavioral and electrophysiological data from high-performing subjects in a parameter regime where competitive encoding in its prefrontal network selects items for storage, interareal projections sustain their representations after stimulus offset, and weak dynamics in its parietal network limit their mutual interference. Violation of these principles accounts for these data among low-performing subjects, implying that poor visual working memory performance reflects poor control over frontoparietal circuitry, making testable predictions for experiments.


Assuntos
Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Feminino , Humanos , Masculino , Transmissão Sináptica
8.
J Neurophysiol ; 120(5): 2269-2281, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089060

RESUMO

Subfornical organ (SFO) neurons exhibit heterogeneity in current expression and spiking behavior, where the two major spiking phenotypes appear as tonic and burst firing. Insight into the mechanisms behind this heterogeneity is critical for understanding how the SFO, a sensory circumventricular organ, integrates and selectively influences physiological function. To integrate efficient methods for studying this heterogeneity, we built a single-compartment, Hodgkin-Huxley-type model of an SFO neuron that is parameterized by SFO-specific in vitro patch-clamp data. The model accounts for the membrane potential distribution and spike train variability of both tonic and burst firing SFO neurons. Analysis of model dynamics confirms that a persistent Na+ and Ca2+ currents are required for burst initiation and maintenance and suggests that a slow-activating K+ current may be responsible for burst termination in SFO neurons. Additionally, the model suggests that heterogeneity in current expression and subsequent influence on spike afterpotential underlie the behavioral differences between tonic and burst firing SFO neurons. Future use of this model in coordination with single neuron patch-clamp electrophysiology provides a platform for explaining and predicting the response of SFO neurons to various combinations of circulating signals, thus elucidating the mechanisms underlying physiological signal integration within the SFO. NEW & NOTEWORTHY Our understanding of how the subfornical organ (SFO) selectively influences autonomic nervous system function remains incomplete but theoretically results from the electrical responses of SFO neurons to physiologically important signals. We have built a computational model of SFO neurons, derived from and supported by experimental data, which explains how SFO neurons produce different electrical patterns. The model provides an efficient system to theoretically and experimentally explore how changes in the essential features of SFO neurons affect their electrical activity.


Assuntos
Potenciais de Ação , Canais de Cálcio/metabolismo , Modelos Neurológicos , Neurônios/fisiologia , Canais de Sódio/metabolismo , Órgão Subfornical/fisiologia , Animais , Células Cultivadas , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Órgão Subfornical/citologia , Órgão Subfornical/metabolismo
9.
J Neurophysiol ; 120(4): 1945-1961, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29947585

RESUMO

For the past decade, research on the storage limitations of working memory has been dominated by two fundamentally different hypotheses. On the one hand, the contents of working memory may be stored in a limited number of "slots," each with a fixed resolution. On the other hand, any number of items may be stored but with decreasing resolution. These two hypotheses have been invaluable in characterizing the computational structure of working memory, but neither provides a complete account of the available experimental data or speaks to the neural basis of the limitations it characterizes. To address these shortcomings, we simulated a multiple-item working memory task with a cortical network model, the cellular resolution of which allowed us to quantify the coding fidelity of memoranda as a function of memory load, as measured by the discriminability, regularity, and reliability of simulated neural spiking. Our simulations account for a wealth of neural and behavioral data from human and nonhuman primate studies, and they demonstrate that feedback inhibition lowers both capacity and coding fidelity. Because the strength of inhibition scales with the number of items stored by the network, increasing this number progressively lowers fidelity until capacity is reached. Crucially, the model makes specific, testable predictions for neural activity on multiple-item working memory tasks. NEW & NOTEWORTHY Working memory is the ability to keep information in mind and is fundamental to cognition. It is actively debated whether the storage limitations of working memory reflect a small number of storage units (slots) or a decrease in coding resolution as a limited resource is allocated to more items. In a cortical model, we found that slot-like capacity and resource-like neural coding resulted from the same mechanism, offering an integrated explanation for storage limitations.


Assuntos
Memória de Curto Prazo , Modelos Neurológicos , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Excitabilidade Cortical , Haplorrinos , Humanos , Neurônios/fisiologia
11.
J Neurophysiol ; 113(3): 808-21, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25411460

RESUMO

Electrical transmission is a dynamically regulated form of communication and key to synchronizing neuronal activity. The bag cell neurons of Aplysia are a group of electrically coupled neuroendocrine cells that initiate ovulation by secreting egg-laying hormone during a prolonged period of synchronous firing called the afterdischarge. Accompanying the afterdischarge is an increase in intracellular Ca2+ and the activation of protein kinase C (PKC). We used whole cell recording from paired cultured bag cell neurons to demonstrate that electrical coupling is regulated by both Ca2+ and PKC. Elevating Ca2+ with a train of voltage steps, mimicking the onset of the afterdischarge, decreased junctional current for up to 30 min. Inhibition was most effective when Ca2+ entry occurred in both neurons. Depletion of Ca2+ from the mitochondria, but not the endoplasmic reticulum, also attenuated the electrical synapse. Buffering Ca2+ with high intracellular EGTA or inhibiting calmodulin kinase prevented uncoupling. Furthermore, activating PKC produced a small but clear decrease in junctional current, while triggering both Ca2+ influx and PKC inhibited the electrical synapse to a greater extent than Ca2+ alone. Finally, the amplitude and time course of the postsynaptic electrotonic response were attenuated after Ca2+ influx. A mathematical model of electrically connected neurons showed that excessive coupling reduced recruitment of the cells to fire, whereas less coupling led to spiking of essentially all neurons. Thus a decrease in electrical synapses could promote the afterdischarge by ensuring prompt recovery of electrotonic potentials or making the neurons more responsive to current spreading through the network.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Cálcio/metabolismo , Neurônios/fisiologia , Animais , Aplysia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Sinapses Elétricas/metabolismo , Sinapses Elétricas/fisiologia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína Quinase C/antagonistas & inibidores , Transmissão Sináptica
12.
Front Neurosci ; 8: 318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25374503

RESUMO

Decisions are faster and less accurate when conditions favor speed, and are slower and more accurate when they favor accuracy. This speed-accuracy trade-off (SAT) can be explained by the principles of bounded integration, where noisy evidence is integrated until it reaches a bound. Higher bounds reduce the impact of noise by increasing integration times, supporting higher accuracy (vice versa for speed). These computations are hypothesized to be implemented by feedback inhibition between neural populations selective for the decision alternatives, each of which corresponds to an attractor in the space of network states. Since decision-correlated neural activity typically reaches a fixed rate at the time of commitment to a choice, it has been hypothesized that the neural implementation of the bound is fixed, and that the SAT is supported by a common input to the populations integrating evidence. According to this hypothesis, a stronger common input reduces the difference between a baseline firing rate and a threshold rate for enacting a choice. In simulations of a two-choice decision task, we use a reduced version of a biophysically-based network model (Wong and Wang, 2006) to show that a common input can control the SAT, but that changes to the threshold-baseline difference are epiphenomenal. Rather, the SAT is controlled by changes to network dynamics. A stronger common input decreases the model's effective time constant of integration and changes the shape of the attractor landscape, so the initial state is in a more error-prone position. Thus, a stronger common input reduces decision time and lowers accuracy. The change in dynamics also renders firing rates higher under speed conditions at the time that an ideal observer can make a decision from network activity. The difference between this rate and the baseline rate is actually greater under speed conditions than accuracy conditions, suggesting that the bound is not implemented by firing rates per se.

13.
Front Neurosci ; 8: 236, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25165430

RESUMO

Decisions are faster and less accurate when conditions favor speed, and are slower and more accurate when they favor accuracy. This phenomenon is referred to as the speed-accuracy trade-off (SAT). Behavioral studies of the SAT have a long history, and the data from these studies are well characterized within the framework of bounded integration. According to this framework, decision makers accumulate noisy evidence until the running total for one of the alternatives reaches a bound. Lower and higher bounds favor speed and accuracy respectively, each at the expense of the other. Studies addressing the neural implementation of these computations are a recent development in neuroscience. In this review, we describe the experimental and theoretical evidence provided by these studies. We structure the review according to the framework of bounded integration, describing evidence for (1) the modulation of the encoding of evidence under conditions favoring speed or accuracy, (2) the modulation of the integration of encoded evidence, and (3) the modulation of the amount of integrated evidence sufficient to make a choice. We discuss commonalities and differences between the proposed neural mechanisms, some of their assumptions and simplifications, and open questions for future work. We close by offering a unifying hypothesis on the present state of play in this nascent research field.

14.
PLoS One ; 9(1): e86248, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465987

RESUMO

It is widely accepted that the direction and magnitude of synaptic plasticity depends on post-synaptic calcium flux, where high levels of calcium lead to long-term potentiation and moderate levels lead to long-term depression. At synapses onto neurons in region CA1 of the hippocampus (and many other synapses), NMDA receptors provide the relevant source of calcium. In this regard, post-synaptic calcium captures the coincidence of pre- and post-synaptic activity, due to the blockage of these receptors at low voltage. Previous studies show that under spike timing dependent plasticity (STDP) protocols, potentiation at CA1 synapses requires post-synaptic bursting and an inter-pairing frequency in the range of the hippocampal theta rhythm. We hypothesize that these requirements reflect the saturation of the mechanisms of calcium extrusion from the post-synaptic spine. We test this hypothesis with a minimal model of NMDA receptor-dependent plasticity, simulating slow extrusion with a calcium-dependent calcium time constant. In simulations of STDP experiments, the model accounts for latency-dependent depression with either post-synaptic bursting or theta-frequency pairing (or neither) and accounts for latency-dependent potentiation when both of these requirements are met. The model makes testable predictions for STDP experiments and our simple implementation is tractable at the network level, demonstrating associative learning in a biophysical network model with realistic synaptic dynamics.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Hipocampo/metabolismo , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Algoritmos , Animais , Humanos , Aprendizagem/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
15.
PLoS Comput Biol ; 9(4): e1003021, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23592967

RESUMO

Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by 'climbing' activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification.


Assuntos
Biologia Computacional/métodos , Tomada de Decisões , Modelos Neurológicos , Algoritmos , Comportamento , Simulação por Computador , Humanos , Interneurônios/metabolismo , Aprendizagem , Neurônios/metabolismo , Neurônios/fisiologia , Percepção , Reprodutibilidade dos Testes , Fatores de Tempo
16.
Neural Netw ; 24(10): 1062-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21658905

RESUMO

Two long-standing questions in neuroscience concern the mechanisms underlying our abilities to make decisions and to store goal-relevant information in memory for seconds at a time. Recent experimental and theoretical advances suggest that NMDA receptors at intrinsic cortical synapses play an important role in both these functions. The long NMDA time constant is suggested to support persistent mnemonic activity by maintaining excitatory drive after the removal of a stimulus and to enable the slow integration of afferent information in the service of decisions. These findings have led to the hypothesis that the local circuit mechanisms underlying decisions must also furnish persistent storage of information. We use a local circuit cortical model of spiking neurons to test this hypothesis, controlling intrinsic drive by scaling NMDA conductance strength. Our simulations provide further evidence that persistent storage and decision making are supported by common mechanisms, but under biophysically realistic parameters, our model demonstrates that the processing requirements of persistent storage and decision making may be incompatible at the local circuit level. Parameters supporting persistent storage lead to strong dynamics that are at odds with slow integration, whereas weaker dynamics furnish the speed-accuracy trade-off common to psychometric data and decision theory.


Assuntos
Córtex Cerebral/fisiologia , Tomada de Decisões/fisiologia , Memória/fisiologia , Rede Nervosa/fisiologia , Redes Neurais de Computação , Animais , Simulação por Computador , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-21415911

RESUMO

The speed-accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time.

18.
Biol Cybern ; 96(6): 615-23, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17468882

RESUMO

We present two weight- and spike-time dependent synaptic plasticity rules consistent with the physiological data of Bi and Poo (J Neurosci 18:10464-10472, 1998). One rule assumes synaptic saturation, while the other is scale free. We extend previous analyses of the asymptotic consequences of weight-dependent STDP to the case of strongly correlated pre- and post-synaptic spiking, more closely resembling associative learning. We further provide a general formula for the contribution of any number of spikes to synaptic drift. Asymptotic weights are shown to principally depend on the correlation and rate of pre- and post-synaptic activity, decreasing with increasing rate under correlated activity, and increasing with rate under uncorrelated activity. Spike train statistics reveal a quantitative effect only in the pre-asymptotic regime, and we provide a new interpretation of the relation between BCM and STDP data.


Assuntos
Potenciais de Ação/fisiologia , Simulação por Computador , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Rede Nervosa , Sinapses/fisiologia , Transmissão Sináptica , Fatores de Tempo
19.
Neural Netw ; 18(5-6): 620-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16087317

RESUMO

Experimental evidence on the distribution of visual attention supports the idea of a spatial saliency map, whereby bottom-up and top-down influences on attention are integrated by a winner-take-all mechanism. We implement this map with a continuous attractor neural network, and test the ability of our model to explain experimental evidence on the distribution of spatial attention. The majority of evidence supports the view that attention is unitary, but recent experiments provide evidence for split attentional foci. We simulate two such experiments. Our results suggest that the ability to divide attention depends on sustained endogenous signals from short term memory to the saliency map, stressing the interplay between working memory mechanisms and attention.


Assuntos
Atenção/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Percepção Visual/fisiologia , Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...