Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956688

RESUMO

Modern agriculture produces a very large amount of agricultural waste that remains unused. The use as a reinforcer of these renewable resources for the realization of composite materials, and the finding of useful industrial applications, constitutes or provokes the groups of researchers in this field. The study conducted in this article falls in this direction. Composites were fabricated with the chopped wheat straw reinforcement and epoxy resin matrix or hybrid resins with 50% and 70% Dammar volume proportions. Some mechanical properties of this type of composite materials were studied based on tensile strength, SEM analysis, water absorption/loss, vibration behavior and compression strength. The strength-strain and strain-strain diagrams, the modulus of elasticity, the breaking strength and the elongation at break were obtained. Compared to the epoxy resin composition, those with 50 and 70% Dammar, respectively, have a 47 and 55% lower breaking strength and a 30 and 84% higher damping factor, respectively. Because the values of these mechanical properties were limited, and in practice superior properties are needed, sandwich composites were manufactured, with the core of previously studied compositions, to which the outer faces of linen fabric were applied. These composites were applied to the bend (in three points), obtaining the force-deformation diagrams. The obtained properties show that they can be used in construction (paneling, shells, etc.), or in the furniture industry.

2.
Polymers (Basel) ; 14(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35160382

RESUMO

The production of composite materials through the reuse of waste or by-products from the agri-food industry will be a challenge for environmental protection. This study focuses in that direction. In the first stage, composites were made with the hybrid resin matrix (with three major volume proportions of natural Dammar resin and epoxy resin) and the reinforcing from shredded shells of sunflower seeds. Based on the tensile and compressive stresses, the stress-strain and strain-strain diagrams were obtained. The surface area of the rupture was investigated with stereo-microscopic analysis, and the absorption/loss of water was studied with a high precision balance. The vibration behavior was investigated experimentally, determining the damping coefficient and its own frequency. In the second stage, the study of these materials was extended. Sandwich composites were made with the same type of hybrid matrix as in the first stage. The core was made of shredded shells of sunflower seeds and the outer faces of linen fabric. These composites were applied to the bend (in three points), being obtained the force-deformation diagrams. The determined mechanical properties allow the complete or partial realization of these composites of some furniture components or of some equipment used in the field of constructions.

3.
Polymers (Basel) ; 12(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751083

RESUMO

When obtaining environment-friendly hybrid resins made of a blend of Dammar natural resin, in a prevailing volume ratio, with epoxy resin, it is challenging to find alternatives for synthetic resins. Composite materials reinforced with waste paper and matrix made of epoxy resin or hybrid resin with a volume ratio of 60%, 70% and 80% Dammar were studied. All samples obtained have been submitted to tensile tests and Scanning Electron Microscopy (SEM) analysis. The tensile response, tensile strength, modulus of elasticity, elongation at break and the analysis of the fracture surface were determined. The damping properties of vibrations of bars in hybrid resins and in the composite materials under study were also examined. The mechanical properties of the four types of resins and of the composite materials were compared. The chemical composition for a hybrid resin specimen were obtained using the Fourier Transformed Infrared Spectroscopy (FTIR) and Energy, Dispersive X-ray Spectrometry (EDS) analyzes.

4.
Polymers (Basel) ; 12(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722153

RESUMO

The need to protect the environment has generated, in the past decade, a competition at the producers' level to use, as much as possible, natural materials, which are biodegradable and compostable. This trend and the composite materials have undergone a spectacular development of the natural components. Starting from these tendencies we have made and studied from the point of view of mechanical and chemical properties composite materials with three types of hybrid matrix based on the Dammar natural hybrid resin and two types of reinforcers made of flax fabric. We have researched the mechanical properties of these composite materials based on their tensile strength and vibration behavior, respectively. We have determined the characteristic curves, elasticity modulus, tensile strength, elongation at break, specific frequency and damping factor. Using SEM (Scanning Electron Microscopy) analysis we have obtained images of the breaking area for each sample that underwent a tensile test and, by applying FTIR (Fourier Transform Infrared Spectroscopy) and EDS (Energy Dispersive Spectroscopy) analyzes, we have determined the spectrum bands and the chemical composition diagram of the samples taken from the hybrid resins used as a matrix for the composite materials under study. Based on the results, we have suggested that these composite materials could be used in different fields of activity.

5.
Polymers (Basel) ; 11(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30960462

RESUMO

The current composite materials must meet a double challenge, one that involves obtaining mechanical properties suitable to the field of activity in which they are used and another one, equally important, that requires that they be renewable. In this paper, we have obtained a category of composite materials that have natural reinforcements (fabrics of flax, cotton, hemp, cattail leaves, and wheat straw). As a matrix, we have used three types of hybrid resin, in the composition of which we used the natural resin dammar, in different majority volume proportions. The differences, up to 100%, were represented by epoxy resin and its associated reinforcement, to generate a quick process of polymerization. We have measured certain mechanical properties and the damping properties of the three types of hybrid resin and of the composite materials under study. Based on these properties, we point out a few fields of activity where these composite materials can be used.

6.
Materials (Basel) ; 12(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991702

RESUMO

As a result of manufacture, composite materials can appear to have variations to their properties due to the existence of structural changes. In this paper, we studied the influence of material irregularity on the mechanical behavior of two categories of bars for which we have used hemp fabric as a reinforcing material. The common matrix is a hybrid resin based on Dammar and epoxy resin. We molded two types of bars within each of the previously mentioned categories. The first type, also called "ideal bar", was made of layers in which the volume proportion and the orientation of the reinforcing material was the same in each section. The ideal bar does not show variations of mechanical properties along it. The second type of bar was molded to have one or two layers where, between certain sections, the reinforcing material was interrupted in several segments. We have determined some mechanical properties, the characteristic curves (strain-stress), the tensile strength, and elongation at break for all the sample sets on trial. Moreover, we have studied the influence of the non-uniformities on the mechanical behavior of the composites by entering certain quality factors that have been calculated after experimental determinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...