Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 245: 112235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37167731

RESUMO

Cytochrome P450 enzymes (CYPs) have attracted much promise as biocatalysts in a push for cleaner and more environmentally friendly catalytic systems. However, changing the substrate specificity of CYPs, such as CYP102A1, can be a challenging task, requiring laborious mutagenesis. An alternative approach is the use of decoy molecules that "trick" the enzyme into becoming active by impersonating the native substrate. Whilst the decoy molecule system has been extensively developed for CYP102A1, its general applicability for other CYP102-family enzymes has yet to be shown. Herein, we demonstrate that decoy molecules can "trick" CYP102A5 and A7 into becoming active and hydroxylating non-native substrates. Furthermore, significant differences in decoy molecule selectivity as well as decoy molecule binding were observed. The X-ray crystal structure of the CYP102A5 haem domain was solved at 2.8 Å, delivering insight into a potential substate-binding site that differs significantly from CYP102A1.


Assuntos
Proteínas de Bactérias , Sistema Enzimático do Citocromo P-450 , Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sítios de Ligação , Especificidade por Substrato , NADPH-Ferri-Hemoproteína Redutase/química
2.
Angew Chem Int Ed Engl ; 62(13): e202215706, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36519803

RESUMO

Catching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity. This structure was attained by incorporation of the stable Cpd I mimic oxomolybdenum mesoporphyrin IX into P450BM3 in the presence of styrene. The orientation of styrene to the Mo-oxo species in the crystal structures sheds light onto the dynamics involved in the rotation of styrene to present its vinyl group to Cpd I. This method serves as a powerful tool for predicting and modelling the stereoselectivity of P450 reactions.


Assuntos
Sistema Enzimático do Citocromo P-450 , Estirenos , Oxirredução , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise
3.
Chembiochem ; 23(14): e202200095, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35352458

RESUMO

Tetraphenylporphyrin (TPP) is a symmetrically substituted synthetic porphyrin whose properties can be readily modified, providing it with significant advantages over naturally occurring porphyrins. Herein, we report the first example of a stable complex between a native biomolecule, the haemoprotein HasA, and TPP as well as its derivatives. The X-ray crystal structures of nine different HasA-TPP complexes were solved at high resolutions. HasA capturing TPP derivatives was also demonstrated to inhibit growth of the opportunistic pathogen Pseudomonas aeruginosa. Mutant variants of HasA binding FeTPP were shown to possess a different mode of coordination, permitting the cyclopropanation of styrene.


Assuntos
Porfirinas , Porfirinas/química , Pseudomonas aeruginosa
4.
Angew Chem Int Ed Engl ; 61(7): e202111612, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34704327

RESUMO

We report an OmpF loop deletion mutant, which improves the cellular uptake of external additives into an Escherichia coli whole-cell biocatalyst. Through co-expression of the OmpF mutant with wild-type P450BM3 in the presence of decoy molecules, the yield of the whole-cell biotransformation of benzene could be considerably improved. Notably, with the decoy molecule C7AM-Pip-Phe the yield duodecupled from 5.7 % to 70 %, with 80 % phenol selectivity. The benzylic hydroxylation of alkyl- and cycloalkylbenzenes was also examined, and with the aid of decoy molecules, propylbenzene and tetralin were converted to 1-hydroxylated products with 78 % yield and 94 % (R) ee for propylbenzene and 92 % yield and 94 % (S) ee for tetralin. Our results suggest that both the decoy molecule and substrate traverse the artificial OmpF channel, synergistically boosting whole-cell bioconversions.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Porinas/metabolismo , Proteínas de Bactérias/química , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Modelos Moleculares , Estrutura Molecular , NADPH-Ferri-Hemoproteína Redutase/química , Porinas/química
5.
Chem Commun (Camb) ; 56(75): 11026-11029, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32895681

RESUMO

We report the enhanced cis- and enantioselective cyclopropanation of styrene catalysed by cytochrome P450BM3 in the presence of dummy substrates, i.e. decoy molecules. With the aid of the decoy molecule R-Ibu-Phe, diastereoselectivity for the cis diastereomers reached 91%, and the enantiomeric ratio for the (1S,2R) isomer reached 94%. Molecular dynamics simulations underpin the experimental data, revealing the mechanism of how enantioselectivity is controlled by the addition of decoy molecules.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclopropanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Estireno/metabolismo , Biocatálise , Ciclopropanos/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Estereoisomerismo , Estireno/química
6.
Curr Opin Chem Biol ; 59: 155-163, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781431

RESUMO

Cytochrome P450BM3 has long been regarded as a promising candidate for use as a biocatalyst, owing to its excellent efficiency for the hydroxylation of unactivated C-H bonds. However, because of its high substrate specificity, its possible applications have been severely limited. Consequently, various approaches have been proposed to overcome the enzyme's natural limitations, thereby expanding its substrate scope to encompass non-native substrates, evoking chemoselectivity, regioselectivity and stereoselectivity and enabling previously inaccessible chemical conversions. Herein, these approaches will be classified into three categories: (1) mutagenesis including directed evolution, (2) haem substitution with artificial cofactors and (3) use of substrate mimics, 'decoy molecules'. Herein, we highlight the representative work that has been conducted in above three categories for discussion of the future outlook of P450BM3 in green chemistry.


Assuntos
Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Bacillus megaterium/química , Bacillus megaterium/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular Direcionada/métodos , Hidroxilação , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Especificidade por Substrato
7.
Angew Chem Int Ed Engl ; 59(19): 7611-7618, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157795

RESUMO

Despite CYP102A1 (P450BM3) representing one of the most extensively researched metalloenzymes, crystallisation of its haem domain upon modification can be a challenge. Crystal structures are indispensable for the efficient structure-based design of P450BM3 as a biocatalyst. The abietane diterpenoid derivative N-abietoyl-l-tryptophan (AbiATrp) is an outstanding crystallisation accelerator for the wild-type P450BM3 haem domain, with visible crystals forming within 2 hours and diffracting to a near-atomic resolution of 1.22 Å. Using these crystals as seeds in a cross-microseeding approach, an assortment of P450BM3 haem domain crystal structures, containing previously uncrystallisable decoy molecules and diverse artificial metalloporphyrins binding various ligand molecules, as well as heavily tagged haem-domain variants, could be determined. Some of the structures reported herein could be used as models of different stages of the P450BM3 catalytic cycle.


Assuntos
Proteínas de Bactérias/química , Cristalização/métodos , Sistema Enzimático do Citocromo P-450/química , NADPH-Ferri-Hemoproteína Redutase/química , Bacillus megaterium/química , Catálise , Heme/química , Indicadores e Reagentes , Metaloporfirinas/síntese química , Mutagênese Sítio-Dirigida , Ligação Proteica , Especificidade por Substrato , Difração de Raios X
9.
Angew Chem Int Ed Engl ; 57(38): 12264-12269, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-29797645

RESUMO

An Escherichia coli whole-cell biocatalyst for the direct hydroxylation of benzene to phenol has been developed. By adding amino acid derivatives as decoy molecules to the culture medium, wild-type cytochrome P450BM3 (P450BM3) expressed in E.coli can be activated and non-native substrates hydroxylated, without supplementing with NADPH. The yield of phenol reached 59 % when N-heptyl-l-prolyl-l-phenylalanine (C7-Pro-Phe) was employed as the decoy molecule. It was shown that decoy molecules, especially those lacking fluorination, reached the cytosol of E. coli, thus imparting in vivo catalytic activity for the oxyfunctionalisation of non-native substrates to intracellular P450BM3.


Assuntos
Proteínas de Bactérias/metabolismo , Benzeno/metabolismo , Escherichia coli/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fenóis/metabolismo , Proteínas de Bactérias/genética , Benzeno/química , Biocatálise , Biotransformação , Hidroxilação , NADPH-Ferri-Hemoproteína Redutase/genética , Fenóis/química , Especificidade por Substrato
10.
Angew Chem Int Ed Engl ; 56(35): 10324-10329, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28544674

RESUMO

The selective hydroxylation of benzene to phenol, without the formation of side products resulting from overoxidation, is catalyzed by cytochrome P450BM3 with the assistance of amino acid derivatives as decoy molecules. The catalytic turnover rate and the total turnover number reached 259 min-1 P450BM3-1 and 40 200 P450BM3-1 when N-heptyl-l-proline modified with l-phenylalanine (C7-l-Pro-l-Phe) was used as the decoy molecule. This work shows that amino acid derivatives with a totally different structure from fatty acids can be used as decoy molecules for aromatic hydroxylation by wild-type P450BM3. This method for non-native substrate hydroxylation by wild-type P450BM3 has the potential to expand the utility of P450BM3 for biotransformations.


Assuntos
Aminoácidos/metabolismo , Benzeno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fenóis/metabolismo , Aminoácidos/química , Benzeno/química , Hidroxilação , Estrutura Molecular , Fenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...