Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675180

RESUMO

Colorectal cancer (CRC) is the second deadliest cancer in the world. Besides APC and p53 alterations, the PI3K/AKT/MTOR and MAPK pathway are most commonly mutated in CRC. So far, no treatment options targeting these pathways are available in routine clinics for CRC patients. We systematically analyzed the response of CRC cells to the combination of small molecular inhibitors targeting the PI3K and MAPK pathways. We used CRC cells in 2D, 3D spheroid, collagen gel cultures and freshly isolated organoids for drug response studies. Readout for drug response was spheroid or organoid growth, spheroid outgrowth, metabolic activity, Western blotting and immunofluorescence. We found profound tumor cell destruction under treatment with a combination of Torin 1 (inhibiting mTOR), MK2206 (targeting AKT) and selumetinib (inhibiting MEK) in 3D but not in 2D. Induction of cell death was due to apoptosis. Western blot analysis revealed efficient drug action. Gedatolisib, a dual PI3K/mTOR inhibitor, could replace Torin1/MK2206 with similar efficiency. The presence of PI3K and/or RAS-RAF-MAPK pathway mutations accounted for treatment responsiveness. Here, we identified a novel, efficient therapy, which induced proliferation stop and tumor cell destruction in vitro based on the genetic background. These preclinical findings show promise to further test this combi-treatment in vivo in mice and to potentially develop a mutation specific targeted therapy for CRC patients.


Assuntos
Neoplasias do Colo , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Humanos
2.
Cancer Lett ; 540: 215737, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569697

RESUMO

Fibroblasts are the most abundant stromal constituents of the tumour microenvironment in primary as well as metastatic colorectal cancer (CRC). Their supportive effect on tumour cells is well established. There is growing evidence that stromal fibroblasts also modulate the immune microenvironment in tumours. Here, we demonstrate a difference in fibroblast-mediated immune modulation between primary CRC and peritoneal metastasis. Cancer-associated fibroblasts (CAFs) were isolated from primary cancer and from peritoneal metastases (MAFs) from a total of 17 patients. The ectoenzyme CD38 was consistently expressed on the surface of all MAFs, while it was absent from CAFs. Furthermore, MAFs secreted higher levels of IGFBP2, CXCL2, CXCL6, CXCL12, PDGF-AA, FGFb, and IL-6. This was associated with a decreased activation of macrophages and a suppression of CD25 expression and proliferation of co-cultivated T-cells. Downregulation of IGFBP2 abolished these immunosuppressive effects of MAFs. Taken together, these results show that MAFs contribute to an immunosuppressive tumour microenvironment in CRC metastases by modulating the phenotype of immune cells through an IGFBP2-dependent mechanism.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Fibroblastos Associados a Câncer/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Fibroblastos/metabolismo , Humanos , Microambiente Tumoral/genética
3.
Mol Psychiatry ; 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035479

RESUMO

The neuropeptide oxytocin (OXT) has generated considerable interest as potential treatment for psychiatric disorders, including anxiety and autism spectrum disorders. However, the behavioral and molecular consequences associated with chronic OXT treatment and chronic receptor (OXTR) activation have scarcely been studied, despite the potential therapeutic long-term use of intranasal OXT. Here, we reveal that chronic OXT treatment over two weeks increased anxiety-like behavior in rats, with higher sensitivity in females, contrasting the well-known anxiolytic effect of acute OXT. The increase in anxiety was transient and waned 5 days after the infusion has ended. The behavioral effects of chronic OXT were paralleled by activation of an intracellular signaling pathway, which ultimately led to alternative splicing of hypothalamic corticotropin-releasing factor receptor 2α (Crfr2α), an important modulator of anxiety. In detail, chronic OXT shifted the splicing ratio from the anxiolytic membrane-bound (mCRFR2α) form of CRFR2α towards the soluble CRFR2α (sCRFR2α) form. Experimental induction of alternative splicing mimicked the anxiogenic effects of chronic OXT, while sCRFR2α-knock down reduced anxiety-related behavior of male rats. Furthermore, chronic OXT treatment triggered the release of sCRFR2α into the cerebrospinal fluid with sCRFR2α levels positively correlating with anxiety-like behavior. In summary, we revealed that the shifted splicing ratio towards expression of the anxiogenic sCRFR2α underlies the adverse effects of chronic OXT treatment on anxiety.

4.
Chemistry ; 20(18): 5288-97, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24677701

RESUMO

Herein we report on metal-free C-C coupling reactions mediated by the pyridine derivative 2,3,6,7-tetrakis(tetramethylguanidino)pyridine under the action of visible light. The rate-determining step is the homolytic N-C bond cleavage of the initially formed N-alkyl pyridinium ion upon excitation with visible light. The released alkyl radicals subsequently dimerize to the C-C coupling product. 2,3,6,7-Tetrakis(tetramethylguanidino)pyridine, which is a strong electron donor (E1/2(CH2Cl2) = -0.76 V vs. ferrocene) is oxidized to the dication. For alkyl = benzyl and allyl, relatively high first-order rate constants of 0.23±0.03 and 0.13±0.03 s(-1) were determined. Regeneration of neutral 2,3,6,7-tetrakis(tetramethylguanidino)-pyridine by reduction allows to drive the process in a cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...