Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36525885

RESUMO

Aggregation of proteins is a critical quality attribute and a major concern during the purification of therapeutic proteins, like monoclonal antibodies. In-solution experiments applying different stress scenarios, e.g., mechanical, or physical stresses, can determine the overall conformational stability of the protein to enhance drug product shelf-life. Several groups have reported surface-induced unfolding and aggregation of monoclonal antibodies and their derivatives during cation exchange chromatography, which results in a two-peak elution behavior of the protein and its species. We have investigated universal influencing factors, like temperature and hold time, on this phenomenon. The formation of the second peak is a kinetic process, which is strongly influenced by temperature during the hold time. However, our main focus was the application of excipients and their influence on the two-peak elution behavior. We compared the on-column screening results with results obtained through a "traditional" in-solution screening using nanoDSF. Mostly, stabilizing excipients, like Sucrose, show their stabilizing abilities in both systems, but some discrepancies, e.g., using Arginine, between the two orthogonal techniques show the potential of the on-column screening system to lead to unexpected results, which would not necessarily be visible in in-solution experiments.


Assuntos
Anticorpos Monoclonais , Excipientes , Cromatografia por Troca Iônica/métodos , Excipientes/química , Anticorpos Monoclonais/química , Temperatura , Cátions
2.
J Chromatogr A ; 1680: 463410, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35994780

RESUMO

Cation exchange chromatography, as part of the monoclonal antibody purification train, is known as a mild polishing technique. However, in the last couple of years, more and more publications have shown unusual elution behavior, resulting from e.g. on-column (reversible) unfolding and aggregation of the predominantly mAb molecules. The stability of the investigated protein seems to play a significant role in this phenomenon. We have used a glycosylated IgG1 antibody as a model protein and investigated several influencing factors, including pH value and ligand density variations of three prototype Fractogel® cation exchange resins. Ligand density, pH and salt concentration are the main contributing factors in the Donnan effect, i.e. distribution of ions, between resin pore volume and bulk volume. This leads to a significantly lower pH value the protein is subjected to during the on-column hold time and therefore influences the conformational stability of our protein. Nano-DSF and kinetic SEC measurements show that the protein is destabilized at low pH values, but also, that the binding to the CEX resin and the elution with increasing salt concentration is responsible for the resulting two-peak elution behavior and partially reversible unfolding and aggregation.


Assuntos
Anticorpos Monoclonais , Resinas de Troca de Cátion , Anticorpos Monoclonais/química , Resinas de Troca de Cátion/química , Cátions/química , Cromatografia por Troca Iônica/métodos , Concentração de Íons de Hidrogênio , Ligantes
3.
Artigo em Inglês | MEDLINE | ID: mdl-34274642

RESUMO

The purification of monoclonal antibodies and Fc fusion proteins consist of several unit operations operated commonly as a platform approach, starting with Protein A chromatography. The first capture step, the following low pH virus inactivation, and subsequent ion exchange chromatography steps are mostly able to remove any impurities, like host cell proteins, aggregates, and viruses. The changes in pH and conductivity during these steps can lead to additional unwanted product species like aggregates. In this study, excipients with stabilizing abilities, like polyols, were used as buffer system additives to study their impact on several aspects during Protein A chromatography, low pH virus inactivation, and cation exchange chromatography. The results show that excipients, like PEG4000, influence antibody elution behavior, as well as host-cell protein elution behavior in a pH-gradient setup. Sugar excipients, like Sucrose, stabilize the antibody during low pH virus inactivation. All excipients tested show no negative impact on virus inactivation and dynamic binding capacity in a subsequent cation exchange chromatography step. This study indicates that excipients and, possibly excipient combinations, can have a beneficial effect on purification without harming subsequent downstream processing steps.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Excipientes , Inativação de Vírus/efeitos dos fármacos , Animais , Células CHO , Cromatografia por Troca Iônica , Cricetinae , Cricetulus , Excipientes/química , Excipientes/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Proteína Estafilocócica A , Sacarose/química , Sacarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...