Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 32(13): 3139-51, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26978461

RESUMO

Semifluorinated alkanes form monolayers with interesting properties at the air-water interface due to their pronounced amphi-solvophobic nature and the stiffness of the fluorocarbons. In the present work, using a combination of structural and dynamic probes, we investigated how small molecular changes can be used to control the properties of such an interface, in particular its organization, rheology, and reversibility during compression-expansion cycles. Starting from a reference system perfluor(dodecyl)dodecane, we first retained the linear structure but changed the linkage groups between the alkyl chains and the fluorocarbons, by introducing either a phenyl group or two oxygens. Next, the molecular structure was changed from linear to branched, with four side chains (two fluorocarbons and two hydrocarbons) connected to extended aromatic cores. Neutron reflectivity at the air-water interface and scanning force microscopy on deposited films show how the changes in the molecular structure affect molecular arrangement relative to the interface. Rheological and compression-expansion measurements demonstrate the significant consequences of these changes in molecular structure and interactions on the interfacial properties. Remarkably, even with these simple molecules, a wide range of surface rheological behaviors can be engineered, from viscous over viscoelastic to brittle solids, for very similar values of the surface pressure.

2.
Phys Chem Chem Phys ; 17(43): 28844-52, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26451399

RESUMO

Semifluorinated alkyl-azobenzene derivatives (SFAB) can form stable Langmuir layers at the air-water interface. These systems combine the amphiphobic character of semifluorinated alkyl units as structure-directing motifs with photochromic behavior based on the well-known reversible cis-trans isomerization upon irradiation with UV and visible light. Herein, we report our investigations of the structural and dynamic tunability of these SFAB layers at the air-water interface in response to an external light stimulus. The monolayer structures and properties of [4-(heptadecafluorooctyl)phenyl](4-octylphenyl)diazene (F8-azo-H8) and bis(4-octylphenyl)diazene (H8-azo-H8) were studied by neutron reflectivity, surface pressure-area isotherms with compression-expansion cycles, and interfacial rheology. We find that UV irradiation reversibly influences the packing behavior of the azobenzene molecules and interpret this as a transition from organized layer structures with the main axis of the molecule vertically oriented in the trans form to random packing of the cis isomer. Interestingly, this trans-cis isomerization leads to an increase in surface pressure, which is accompanied by a decrease in viscoelastic moduli. These results suggest ways of tailoring the properties of responsive fluid interfaces.

3.
Langmuir ; 31(6): 1980-7, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25602738

RESUMO

Dendrimeric macromolecules with defined shape and size are promising candidates for delivering drug or DNA molecules into cells. In this work we study the influence of an amphiphilic polyphenylene dendrimer on a model cell membrane consisting of a condensed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer. A small surface pressure decrease is observed when the dendrimer solution is injected into the aqueous phase below the monolayer. X-ray reflectivity measurements show that the surface monolayer remains intact. The molecular-scale picture is obtained with sum-frequency generation spectroscopy. With this technique, we observe that the tails of the surfactant molecules become less ordered upon interaction with the amphiphilic polyphenylene dendrimer. In contrast, the water molecules below the DPPC layer become more ordered. Our observations suggest that electrostatic interactions between the negative charge of the dendrimer and the positively charged part of the DPPC headgroup keep the dendrimer located below the headgroup. No evidence of dendrimer insertion into the membrane has been observed. Apparently before entering the cell membrane the dendrimer can stick at the hydrophilic part of the lipids.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Dendrímeros/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Eletricidade Estática , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Tensão Superficial
4.
Chem Soc Rev ; 44(12): 4072-90, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25256012

RESUMO

Polyphenylene dendrimers (PPDs) represent a unique class of dendrimers based on their rigid, shape persistent chemical structure. These macromolecules are typically looked at as nonpolar precursors for conjugated systems. Yet over the years there have been synthetic achievements that have produced PPDs with a range of polarities that break the hydrophobic stereotype, and provide dendrimers that can be synthetically tuned to be used in applications such as stable transition metal catalysts, nanocarriers for biological drug delivery, and sensors for volatile organic compounds (VOCs), among many others. This is based on strategies that allow for the modification of PPDs at the core, scaffold, and surface to introduce numerous different groups, such as electrolytes, ions, or other polar species. This review is aimed to demonstrate the versatility of PPDs through their site-specific chemical functionalization to produce robust materials with various polarities.

5.
Adv Healthc Mater ; 4(3): 377-84, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25182694

RESUMO

The design and synthesis of a polyphenylene dendrimer (PPD 3) with discrete binding sites for lipophilic guest molecules and characteristic surface patterns is presented. Its semi-rigidity in combination with a precise positioning of hydrophilic and hydrophobic groups at the periphery yields a refined architecture with lipophilic binding pockets that accommodate defined numbers of biologically relevant guest molecules such as fatty acids or the drug doxorubicin. The size, architecture, and surface textures allow to even penetrate brain endothelial cells that are a major component of the extremely tight blood-brain barrier. In addition, low to no toxicity is observed in in vivo studies using zebrafish embryos. The unique PPD scaffold allows the precise placement of functional groups in a given environment and offers a universal platform for designing drug transporters that closely mimic many features of proteins.


Assuntos
Dendrímeros/administração & dosagem , Dendrímeros/química , Doxorrubicina/administração & dosagem , Polímeros/administração & dosagem , Animais , Encéfalo/citologia , Linhagem Celular/efeitos dos fármacos , Técnicas de Química Sintética , Dendrímeros/farmacocinética , Doxorrubicina/química , Portadores de Fármacos , Desenho de Fármacos , Embrião não Mamífero/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Polímeros/química , Polímeros/farmacocinética , Distribuição Tecidual , Peixe-Zebra/embriologia
6.
Chem Asian J ; 10(1): 139-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25319139

RESUMO

A macrocyclic dibenzocoronene tetracarboxdiimide containing two benzo-21-crown-7 groups has been synthesized. It shows liquid-crystalline behavior and selectively binds Pb(2+) or K(+) to form 1:2 complexes in solution. The complexation leads to a significant increase of fluorescence; the surface organization of discotic columnar structures, in the solid-state, can be controlled by selective ion binding.

7.
Macromol Rapid Commun ; 35(2): 152-160, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24272967

RESUMO

In the ideal case, a precise synthesis yields molecules with a constitutional as well as a conformational perfectness. Such a case of precision is demonstrated by the synthesis of semi-rigid amphiphilic polyphenylene dendrimers (PPDs). Polar sulfonate groups are precisely placed on their periphery in such a manner that patches of polar and non-polar regions are created. Key structural features are the semi-rigid framework and shape-persistent nature of PPDs since the limited flexibility introduces a nano-phase-separated amphiphilic rim of the dendrimer. This results in both attractive and repulsive interactions with a given solvent. Frustrated solvent structures then lead to a remarkable solubility in solvents of different polarity such as toluene, methanol, and water or their mixtures. Water solubility combined with defined surface structuring and variable hydrophobicity of PPDs that resemble the delicate surface textures of proteins are important prerequisites for their biological and medical applications based upon cellular internalization.


Assuntos
Dendrímeros/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Solventes/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...