Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(30): 6994-7003, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37465903

RESUMO

DNA has excellent molecular recognition properties. At the same time, DNA has a programmable structure, high stability, and can be easily modified, making DNA attractive for biosensor design. To convert DNA hybridization or aptamer binding events to physically detectable signals, various nanomaterials have been extensively exploited to take advantage of their optical and surface properties. A popular sensing scheme is through the adsorption of a fluorescently-labeled DNA probe, where detection is achieved by target-induced probe desorption and fluorescence recovery. Another method is to use DNA to protect the colloidal stability of nanomaterials, where subsequent target binding can decrease the protection ability and induce aggregation; this method has mainly been used for gold nanoparticles. This Perspective summarizes some of our work in examining the sensing mechanisms, and we articulate the importance of the understanding of DNA/surface and target/surface interactions for the development of practical DNA-based biosensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química
2.
Glycobiology ; 32(10): 826-848, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35871440

RESUMO

The substitution and de-substitution of carbohydrate materials are important steps in the biosynthesis and/or breakdown of a wide variety of biologically important polymers. The SGNH hydrolase superfamily is a group of related and well-studied proteins with a highly conserved catalytic fold and mechanism composed of 16 member families. SGNH hydrolases can be found in vertebrates, plants, fungi, bacteria, and archaea, and play a variety of important biological roles related to biomass conversion, pathogenesis, and cell signaling. The SGNH hydrolase superfamily is chiefly composed of a diverse range of carbohydrate-modifying enzymes, including but not limited to the carbohydrate esterase families 2, 3, 6, 12 and 17 under the carbohydrate-active enzyme classification system and database (CAZy.org). In this review, we summarize the structural and functional features that delineate these subfamilies of SGNH hydrolases, and which generate the wide variety of substrate preferences and enzymatic activities observed of these proteins to date.


Assuntos
Carboidratos , Hidrolases , Biopolímeros/biossíntese , Biopolímeros/química , Carboidratos/biossíntese , Carboidratos/química , Esterases/química , Esterases/classificação , Esterases/metabolismo , Hidrolases/química , Hidrolases/classificação , Hidrolases/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...