Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38672150

RESUMO

Astrocytes are the main homeostatic cells in the central nervous system, with the unique ability to transform from quiescent into a reactive state in response to pathological conditions by reacquiring some precursor properties. This process is known as reactive astrogliosis, a compensatory response that mediates tissue damage and recovery. Although it is well known that SOX transcription factors drive the expression of phenotype-specific genetic programs during neurodevelopment, their roles in mature astrocytes have not been studied extensively. We focused on the transcription factors SOX2 and SOX9, shown to be re-expressed in reactive astrocytes, in order to study the reactivation-related functional properties of astrocytes mediated by those proteins. We performed an initial screening of SOX2 and SOX9 expression after sensorimotor cortex ablation injury in rats and conducted gain-of-function studies in vitro using astrocytes derived from the human NT2/D1 cell line. Our results revealed the direct involvement of SOX2 in the reacquisition of proliferation in mature NT2/D1-derived astrocytes, while SOX9 overexpression increased migratory potential and glutamate uptake in these cells. Our results imply that modulation of SOX gene expression may change the functional properties of astrocytes, which holds promise for the discovery of potential therapeutic targets in the development of novel strategies for tissue regeneration and recovery.

2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614288

RESUMO

The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.


Assuntos
Células-Tronco Adultas , Fatores de Transcrição SOX , Adulto , Humanos , Adolescente , Idoso , Fatores de Transcrição SOX/genética , Envelhecimento/genética , Diferenciação Celular/fisiologia , Células-Tronco
3.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563385

RESUMO

Astrocytes, as the most abundant glial cells in the central nervous system, are tightly integrated into neural networks and participate in numerous aspects of brain physiology and pathology. They are the main homeostatic cells in the central nervous system, and the loss of astrocyte physiological functions and/or gain of pro-inflammatory functions, due to their reactivation or cellular senescence, can have profound impacts on the surrounding microenvironment with pathological outcomes. Although the importance of astrocytes is generally recognized, and both senescence and reactive astrogliosis have been extensively reviewed independently, there are only a few comparative overviews of these complex processes. In this review, we summarize the latest data regarding astrocyte reactivation and senescence, and outline similarities and differences between these phenotypes from morphological, functional, and molecular points of view. A special focus has been given to neurodegenerative diseases, where these phenotypic alternations of astrocytes are significantly implicated. We also summarize current perspectives regarding new advances in model systems based on astrocytes as well as data pointing to these glial cells as potential therapeutic targets.


Assuntos
Astrócitos , Doenças Neurodegenerativas , Astrócitos/patologia , Encéfalo/patologia , Gliose/patologia , Humanos , Doenças Neurodegenerativas/patologia , Fenótipo
4.
Neural Regen Res ; 17(11): 2325-2334, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35535866

RESUMO

Precise tuning of gene expression, accomplished by regulatory networks of transcription factors, epigenetic modifiers, and microRNAs, is crucial for the proper neural development and function of the brain cells. The SOX transcription factors are involved in regulating diverse cellular processes during embryonic and adult neurogenesis, such as maintaining the cell stemness, cell proliferation, cell fate decisions, and terminal differentiation into neurons and glial cells. MicroRNAs represent a class of small non-coding RNAs that play important roles in the regulation of gene expression. Together with other gene regulatory factors, microRNAs regulate different processes during neurogenesis and orchestrate the spatial and temporal expression important for neurodevelopment. The emerging data point to a complex regulatory network between SOX transcription factors and microRNAs that govern distinct cellular activities in the developing and adult brain. Deregulated SOX/microRNA interplay in signaling pathways that influence the homeostasis and plasticity in the brain has been revealed in various brain pathologies, including neurodegenerative disorders, traumatic brain injury, and cancer. Therapeutic strategies that target SOX/microRNA interplay have emerged in recent years as a promising tool to target neural tissue regeneration and enhance neurorestoration. Numerous studies have confirmed complex interactions between microRNAs and SOX-specific mRNAs regulating key features of glioblastoma. Keeping in mind the crucial roles of SOX genes and microRNAs in neural development, we focus this review on SOX/microRNAs interplay in the brain during development and adulthood in physiological and pathological conditions. Special focus was made on their interplay in brain pathologies to summarize current knowledge and highlight potential future development of molecular therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...