Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biomed Inform ; 143: 104391, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196988

RESUMO

OBJECTIVE: This article summarizes our approach to extracting medication and corresponding attributes from clinical notes, which is the focus of track 1 of the 2022 National Natural Language Processing (NLP) Clinical Challenges(n2c2) shared task. METHODS: The dataset was prepared using Contextualized Medication Event Dataset (CMED), including 500 notes from 296 patients. Our system consisted of three components: medication named entity recognition (NER), event classification (EC), and context classification (CC). These three components were built using transformer models with slightly different architecture and input text engineering. A zero-shot learning solution for CC was also explored. RESULTS: Our best performance systems achieved micro-average F1 scores of 0.973, 0.911, and 0.909 for the NER, EC, and CC, respectively. CONCLUSION: In this study, we implemented a deep learning-based NLP system and demonstrated that our approach of (1) utilizing special tokens helps our model to distinguish multiple medications mentions in the same context; (2) aggregating multiple events of a single medication into multiple labels improves our model's performance.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Linguagem Natural
2.
Chem Sci ; 11(35): 9665-9674, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094231

RESUMO

The use of data science tools to provide the emergence of non-trivial chemical features for catalyst design is an important goal in catalysis science. Additionally, there is currently no general strategy for computational homogeneous, molecular catalyst design. Here, we report the unique combination of an experimentally verified DFT-transition-state model with a random forest machine learning model in a campaign to design new molecular Cr phosphine imine (Cr(P,N)) catalysts for selective ethylene oligomerization, specifically to increase 1-octene selectivity. This involved the calculation of 1-hexene : 1-octene transition-state selectivity for 105 (P,N) ligands and the harvesting of 14 descriptors, which were then used to build a random forest regression model. This model showed the emergence of several key design features, such as Cr-N distance, Cr-α distance, and Cr distance out of pocket, which were then used to rapidly design a new generation of Cr(P,N) catalyst ligands that are predicted to give >95% selectivity for 1-octene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...