Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(9): 5029-5046, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524564

RESUMO

Bacterial mRNAs have short life cycles, in which transcription is rapidly followed by translation and degradation within seconds to minutes. The resulting diversity of mRNA molecules across different life-cycle stages impacts their functionality but has remained unresolved. Here we quantitatively map the 3' status of cellular RNAs in Escherichia coli during steady-state growth and report a large fraction of molecules (median>60%) that are fragments of canonical full-length mRNAs. The majority of RNA fragments are decay intermediates, whereas nascent RNAs contribute to a smaller fraction. Despite the prevalence of decay intermediates in total cellular RNA, these intermediates are underrepresented in the pool of ribosome-associated transcripts and can thus distort quantifications and differential expression analyses for the abundance of full-length, functional mRNAs. The large heterogeneity within mRNA molecules in vivo highlights the importance in discerning functional transcripts and provides a lens for studying the dynamic life cycle of mRNAs.


Assuntos
Escherichia coli , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Escherichia coli/genética , Escherichia coli/metabolismo , Estabilidade de RNA , Ribossomos/genética , Ribossomos/metabolismo
2.
Sci Rep ; 10(1): 16843, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033364

RESUMO

Two-state ratiometric biosensors change conformation and spectral properties in response to specific biochemical inputs. Much effort over the past two decades has been devoted to engineering biosensors specific for ions, nucleotides, amino acids, and biochemical potentials. The utility of these biosensors is diminished by empirical errors in fluorescence-ratio signal measurement, which reduce the range of input values biosensors can measure accurately. Here, we present a formal framework and a web-based tool, the SensorOverlord, that predicts the input range of two-state ratiometric biosensors given the experimental error in measuring their signal. We demonstrate the utility of this tool by predicting the range of values that can be measured accurately by biosensors that detect pH, NAD+, NADH, NADPH, histidine, and glutathione redox potential. The SensorOverlord enables users to compare the predicted accuracy of biochemical measurements made with different biosensors, and subsequently select biosensors that are best suited for their experimental needs.


Assuntos
Bioquímica/métodos , Técnicas Biossensoriais/métodos , Animais , Fluorescência , Glutationa , Histidina/análise , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , NAD , NADP , Oxirredução , Valor Preditivo dos Testes
3.
EMBO J ; 39(23): e104523, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073387

RESUMO

Oxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation-resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance. We integrated shotgun redox proteomics, structural systems biology, and machine learning to resolve properties determining protein damage by γ-irradiation in Escherichia coli and D. radiodurans at multiple scales. Local accessibility, charge, and lysine enrichment accurately predict ROS susceptibility. Lysine, methionine, and cysteine usage also contribute to ROS resistance of the D. radiodurans proteome. Our model predicts proteome maintenance machinery, and proteins protecting against ROS are more resistant in D. radiodurans. Our findings substantiate that protein-intrinsic protection impacts oxidative stress resistance, identifying causal molecular properties.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estresse Oxidativo/fisiologia , Proteoma/metabolismo , Envelhecimento/metabolismo , Biologia Computacional , Deinococcus/metabolismo , Escherichia coli , Humanos , Aprendizado de Máquina , Doenças Neurodegenerativas/metabolismo , Oxirredução , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de Proteína
4.
Elife ; 92020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32367802

RESUMO

Hydrogen peroxide is the preeminent chemical weapon that organisms use for combat. Individual cells rely on conserved defenses to prevent and repair peroxide-induced damage, but whether similar defenses might be coordinated across cells in animals remains poorly understood. Here, we identify a neuronal circuit in the nematode Caenorhabditis elegans that processes information perceived by two sensory neurons to control the induction of hydrogen peroxide defenses in the organism. We found that catalases produced by Escherichia coli, the nematode's food source, can deplete hydrogen peroxide from the local environment and thereby protect the nematodes. In the presence of E. coli, the nematode's neurons signal via TGFß-insulin/IGF1 relay to target tissues to repress expression of catalases and other hydrogen peroxide defenses. This adaptive strategy is the first example of a multicellular organism modulating its defenses when it expects to freeload from the protection provided by molecularly orthologous defenses from another species.


Cells of all kinds often wage chemical warfare against each other. Hydrogen peroxide is often the weapon of choice on the microscopic battlefield, where it is used to incapacitate opponents or to defend against attackers. For example, some plants produce hydrogen peroxide in response to infection to fight off disease-causing microbes. Individual cells have also evolved defenses to prevent or repair 'injuries' caused by hydrogen peroxide. These are similar across many different species. They include enzymes called catalases, which break down hydrogen peroxide, and others to repair damage. However, scientists still do not fully understand how animals and other multicellular organisms might coordinate these defenses across their cells. Caenorhabditis elegans is a microscopic species of worm that lives in rotting fruits. It often encounters the threat of cellular warfare: many types of bacteria in its environment generate hydrogen peroxide, and some can make enough to kill the worms outright. Like other organisms, C. elegans also produces catalases to defend itself against hydrogen peroxide attacks. However, it must activate its defenses at the right time; if it did so when they were not needed, this would result in a detrimental energy 'cost' to the worm. Although C. elegans is a small organism containing only a defined number of cells, exactly why and how it switches its chemical defenses on or off remains unknown. Schiffer et al. therefore set out to determine how C. elegans controls these defenses, focusing on the role of the brain in detecting and processing information from its environment. Experiments looking at the brains of genetically manipulated worms revealed a circuit of sensory nerve cells whose job is to tell the rest of the worm's tissues that they no longer need to produce defense enzymes. Crucially, the circuit became active when the worms sensed E. coli bacteria nearby. Bacteria in the same family as E. coli are normally found in in the same habitat as C. elegans and these bacteria are also known to make enzymes of their own to eliminate hydrogen peroxide around them. These results indicate that C. elegans can effectively decide, based on the activity of its circuit, when to use its own defenses and when to 'freeload' off those of neighboring bacteria. This work is an important step towards understanding how sensory circuits in the brain can control hydrogen peroxide defenses in multicellular organisms. In the future, it could help researchers work out how more complex animals, like humans, coordinate their cellular defenses, and therefore potentially yield new strategies for improving health and longevity.


Assuntos
Caenorhabditis elegans/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Catalepsia/metabolismo , Escherichia coli , Peróxido de Hidrogênio/metabolismo , Fator de Crescimento Insulin-Like I/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...