Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 32(3): 517-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23233353

RESUMO

Contaminants used at low elevation, such as pesticides on crops, can be transported tens of kilometers and deposited in adjacent mountains in many parts of the world. Atmospherically deposited organic contaminants in the Sierra Nevada Mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The authors sampled shallow-water sediment and tadpoles (Pseudacris sierra) for pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls in four high-elevation sites in Yosemite National Park in the central Sierra Nevada twice during the summers of 2006, 2007, and 2008. Both historic- and current-use pesticides showed a striking pattern of lower concentrations in both sediment and tadpoles in Yosemite than was observed previously in Sequoia-Kings Canyon National Parks in the southern Sierra Nevada. By contrast, PAH concentrations in sediment were generally greater in Yosemite than in Sequoia-Kings Canyon. The authors suggest that pesticide concentrations tend to be greater in Sequoia-Kings Canyon because of a longer air flow path over agricultural lands for this park along with greater pesticide use near this park. Concentrations for DDT-related compounds in some sediment samples exceeded guidelines or critical thresholds in both parks. A general pattern of difference between Yosemite and Sequoia-Kings Canyon was not evident for total tadpole cholinesterase activity, an indicator of harmful exposure to organophosphorus and carbamate pesticides. Variability of chemical concentrations among sites, between sampling periods within each year, and among years, contributed significantly to total variation, although the relative contributions differed between sediment and tadpoles.


Assuntos
Atmosfera/química , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Poluição do Ar/estatística & dados numéricos , Altitude , Animais , Anuros/metabolismo , California , Monitoramento Ambiental , Água Doce/química , Larva/metabolismo , Praguicidas/metabolismo , Bifenilos Policlorados/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Análise Espaço-Temporal , Poluentes Químicos da Água/metabolismo
2.
Birth Defects Res B Dev Reprod Toxicol ; 95(4): 276-88, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22581590

RESUMO

Atrazine (ATZ) is a selective triazine herbicide used primarily for preemergent weed control in corn, sorghum, and sugar cane production. It is one of the most widely used herbicides in North America. Some research published over the last decade suggests that chronic exposure to environmentally relevant ATZ concentrations can adversely impact gonadal development and/or sexual differentiation in amphibians and fish, while other studies report no effect, or moderate effects. As a result, contrasting conclusions have been published regarding the potential effects of the herbicide ATZ on aquatic species. Two near-identical 4-month studies in 2009 (Study I) and 2010 (Study II) were performed investigating the potential for chronic ATZ exposure to affect zebrafish (Danio rerio) sexual development and differentiation. Zebrafish were chronically exposed to 0, 0.1, 1, 10 µM ATZ or 1 nM 17ß-estradiol (E2). Fish were histologically examined to assign gender and to evaluate potential impacts of E2 or ATZ on gonadal development. Exposure to E2 consistently resulted in a significantly higher proportion of female fish to normal male fish when compared to unexposed fish (both studies). In both studies, ATZ exposure did not significantly influence the percentage of female or male fish when compared to unexposed fish. A greater percentage of abnormally developed male fish and fish lacking differentiated gonadal tissue was observed in Study II E2 exposures but not in ATZ exposures. Together, these studies indicate that long-term exposure to ATZ at or above environmentally relevant concentrations does not significantly impact zebrafish gonadal development or sexual differentiation.


Assuntos
Atrazina/administração & dosagem , Atrazina/toxicidade , Desenvolvimento Sexual/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Exposição Ambiental/efeitos adversos , Feminino , Gônadas/efeitos dos fármacos , Gônadas/crescimento & desenvolvimento , Masculino
3.
Reprod Biol Endocrinol ; 9: 42, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21453523

RESUMO

BACKGROUND: Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA), the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional trans-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes in vivo, and which genes might be affected is not known. METHODS: A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR) was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale. RESULTS: MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are Hox genes. CONCLUSIONS: These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model.


Assuntos
Acetatos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Receptores Androgênicos/genética , Animais , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Transporte de Íons/efeitos dos fármacos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Testosterona/farmacologia
4.
Environ Toxicol Chem ; 30(3): 682-91, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21298712

RESUMO

Atmospherically deposited pesticides from the intensively cultivated Central Valley of California, USA, have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the frogs Rana muscosa and Rana sierrae at high elevation in the Sierra Nevada mountains. Previous studies on these species have relied on correlations between frog population status and either a metric for amount of upwind pesticide use or limited measurements of pesticide concentrations in the field. The present study tested the hypothesis that pesticide concentrations are negatively correlated with frog population status (i.e., fraction of suitable water bodies occupied within 2 km of a site) by measuring pesticide concentrations in multiple media twice at 28 sites at high elevation in the southern Sierra Nevada. Media represented were air, sediment, and Pseudacris sierra tadpoles. Total cholinesterase (ChE), which has been used as an indicator for organophosphorus and carbamate pesticide exposure, was also measured in P. sierra tadpoles. Results do not support the pesticide-site occupancy hypothesis. Among 46 pesticide compounds analyzed, nine were detected with ≥ 30% frequency, representing both historically and currently used pesticides. In stepwise regressions with a chemical metric and linear distance from the Central Valley as predictor variables, no negative association was found between frog population status and the concentration of any pesticide or tadpole ChE activity level. By contrast, frog population status showed a strong positive relationship with linear distance from the Valley, a pattern that is consistent with a general west-to-east spread across central California of the amphibian disease chytridiomycosis observed by other researchers.


Assuntos
Poluentes Ambientais/análise , Praguicidas/análise , Ranidae , Animais , California , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Dinâmica Populacional
5.
Aquat Toxicol ; 95(4): 355-61, 2009 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-19883949

RESUMO

Fish in agricultural and remote areas may be exposed to endosulfan and its degradation products as a result of direct runoff, atmospheric transport and deposition. The following study used the zebrafish developmental model to investigate the responses to endosulfan I and endosulfan sulfate, the major degradation product of endosulfan I and II. Embryos were dechorionated and waterborne exposed to the endosulfan I or endosulfan sulfate from 6 to 120h post-fertilization (hpf). Endosulfan I exposure concentrations ranged from 0.01 to 10microg/L and endosulfan sulfate from 1 to 100microg/L. Water solutions were renewed every 24h and fish were scored for overt developmental and behavioral abnormalities. Chemical analysis was performed on water, whole embryo, and larvae samples to determine waterborne exposure concentrations and tissue concentrations throughout the 5-day period. The most sensitive toxicity endpoint for both endosulfan I and endosulfan sulfate was an abnormal response of the embryo/larvae to touch, suggesting that endosulfan I and sulfate are developmentally neurotoxic. The waterborne exposure EC(50)s for inhibition of touch response for endosulfan I and endosulfan sulfate were 2.2microg/L and 23microg/L, respectively. The endosulfans were highly concentrated by the organisms, and the inhibition of touch response tissue EC(50), determined from the measured tissue concentrations, was 367ng/g for endosulfan I and 4552ng/g for endosulfan sulfate.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Endossulfano/análogos & derivados , Endossulfano/toxicidade , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Endossulfano/análise , Endossulfano/metabolismo , Água Doce/química , Inseticidas/análise , Inseticidas/metabolismo , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/anormalidades , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...