Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(45): e2202992, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36156409

RESUMO

Proton electrochemistry is promising for developing post-lithium energy storage devices with high capacity and rate capability. However, some electrode materials are vulnerable because of the co-intercalation of free water molecules in traditional acid electrolytes, resulting in rapid capacity fading. Here, the authors report a molecular crowding electrolyte with the usage of poly(ethylene glycol) (PEG) as a crowding agent, achieving fast and stable electrochemical proton storage and expanded working potential window (3.2 V). Spectroscopic characterisations reveal the formation of hydrogen bonds between water and PEG molecules, which is beneficial for confining the activity of water molecules. Molecular dynamics simulations confirm a significant decrease of free water fraction in the molecular crowding electrolyte. Dynamic structural evolution of the MoO3 anode is studied by in-situ synchrotron X-ray diffraction (XRD), revealing a reversible multi-step naked proton (de)intercalation mechanism. Surficial adsorption of PEG molecules on MoO3 anode works in synergy to alleviate the destructive effect of concurrent water desolvation, thereby achieving enhanced cycling stability. This strategy offers possibilities of practical applications of proton electrochemistry thanks to the low-cost and eco-friendly nature of PEG additives.


Assuntos
Fontes de Energia Elétrica , Prótons , Eletrólitos/química , Lítio/química , Água
2.
Small ; 18(22): e2201449, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35557499

RESUMO

Rechargeable aqueous proton batteries are promising competitors for the next generation of energy storage systems with the fast diffusion kinetics and wide availability of protons. However, poor cycling stability is a big challenge for proton batteries due to the attachment of water molecules to the electrode surface in acid electrolytes. Here, a hydrogen-bond disrupting electrolyte strategy to boost proton battery stability via simultaneously tuning the hydronium ion solvation sheath in the electrolyte and the electrode interface is reported. By mixing cryoprotectants such as glycerol with acids, hydrogen bonds involving water molecules are disrupted leading to a modified hydronium ion solvation sheaths and minimized water activity. Concomitantly, glycerol absorbs on the electrode surface and acts to protect the electrode surface from water. Fast and stable proton storage with high rate capability and long cycle life is thus achieved, even at temperatures as low as -50 °C. This electrolyte strategy may be universal and is likely to pave the way toward highly stable aqueous energy storage systems.


Assuntos
Glicerol , Prótons , Eletrólitos/química , Ligação de Hidrogênio , Água/química
3.
Dalton Trans ; 50(4): 1357-1365, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33426546

RESUMO

The P2/O3 layered oxide system is thought to benefit from a synergistic enhancement, resulting from the presence of both phases, which makes it a promising cathode material for Na-ion battery applications. Here, biphasic P2/O3-Na2/3Li0.18Mn0.8Fe0.2O2 is investigated via a combination of neutron and X-ray scattering techniques. Neutron diffraction data indicates that the O3 alkali metal site is fully occupied by Li. Real time operando X-ray diffraction data shows the structural evolution of the composite electrode - at the charged state there is no evidence of O2, OP4 or Z phases. The results presented herein provide new insight into site preference of Li in biphasic materials and highlights the value of utilizing multiple phases to achieve high performance layered cathode materials for sodium battery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...